`
Читать книги » Книги » Научные и научно-популярные книги » Математика » Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда

Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда

Перейти на страницу:

«Формула, чей Гёделев номер — арифмоквайнификация d, не является теоремой ТТЧ».

Но — и это уже не должно нас удивлять — эта формула не что иное, как сама строчка G! Следовательно, нашим окончательным переводом будет:

«G — не теорема ТТЧ»;

или, если вам так больше нравится —

«Я — не теорема ТТЧ».

Начав с интерпретации на низшем уровне — суждения теории чисел, мы постепенно дошли до интерпретации на высшем уровне — суждения мета-ТТЧ.

ТТЧ выбрасывает полотенце

В главе IX мы уже упоминали о главном следствии этого удивительного построения: это неполнота ТТЧ. Давайте вспомним, как мы при этом рассуждали:

Является ли G теоремой ТТЧ? Если это так, то она должна утверждать истинный факт. Но что именно утверждает G? Свою собственную нетеоремность. Следовательно, из ее теоремности вытекала бы ее нетеоремность. Противоречие!

С другой стороны, что, если G не теорема? Это можно принять, так как противоречия здесь не возникает. Но G утверждает именно собственную нетеоремность — следовательно, G утверждает истинный факт. Значит, поскольку G не теорема, мы можем заключить, что существует по меньшей мере один истинный факт, не являющийся теоремой ТТЧ.

Теперь — обещанное объяснение сложного шага нашего перевода. Я воспользуюсь для этого похожим примером. Возьмем строчку

~Eа:Eа':<ЧЕРЕПАШЬЯ ПАРА{а, а'}ΛДЕСЯТАЯ СТЕПЕНЬ{SS0/а'',а'}>

где оба сокращения обозначают строчки ТТЧ, которые вы можете дописать сами. ДЕСЯТАЯ СТЕПЕНЬ{а'',а'} представляет высказывание «а' равняется а'' в десятой степени». Таким образом, дословный перевод на русский получается такой:

«Не существует чисел а и а' таких, что они (1) составляют Черепашью пару, и (2) а' — 2 в десятой степени».

Но мы знаем, что десятая степень 2 существует — это 1024. Таким образом, эта строчка на самом деле утверждает, что:

«Не существует числа а, которое составляет Черепашью пару с числом 1024».

Это высказывание, в свою очередь, сводится к:

«1024 не обладает Черепашьим свойством».

Нам удалось заменить символ числа на его описание. Это было возможно, благодаря использованию дополнительной квалифицированной переменной (а' ), В данном случае, число 1024 было описано как «десятая степень двух»— выше это было числом, описанным как «арифмоквайнификация d».

«Будучи арифмоквайнированным, производит нетеоремность!»

Переведем дыхание и посмотрим, что мы сделали до сих пор. Для этого сравним арифмоквайнирование с парадоксом Эпименида. Вот схема этого соответствия:

ложность <==> нетеоремность

цитата фразы <==> Геделев номер строки

предварение предиката цитатой фразы <==> подстановка символа (или определенного терма) в открытую формулу

предварение предиката цитатой фразы <==> подстановка Гёделева номера строчки в открытую формулу

предварение предиката им самим в кавычках (квайнирование) <==> Подстановка Гёделева номера открытой формулы в саму эту формулу (арифмоквайнирование)

После квайнирования производит ложное высказывание (предикат без подлежащего) <==> «дядя» G (открытая формула ТТЧ)

«После квайнирования производит ложное высказывание» (тот же предикат, квайнированныи) <==> номер d (Гёделев номер предыдущей открытой формулы)

«После квайнирования производит ложное высказывание» После квайнирования производит ложное высказывание <==> строчка G (высказывание ТТЧ, полученное путем подстановки d в «дядю», то есть, путем его арифмоквайнирования)

Вторая теорема Гёделя

Поскольку интерпретация G истинна, интерпретация ее отрицания ~G — ложна. Мы знаем, что в ТТЧ невозможно вывести ложные утверждения. Следовательно. ни G, ни ее отрицание ~G не могут быть теоремами ТТЧ. Мы нашли в нашей системе «дыру» — неразрешимое суждение. Из этого следуют несколько фактов. Вот один из них, довольно любопытный: несмотря на то, что ни G, ни ее отрицание ~G не являются теоремами ТТЧ, формула — теорема, поскольку из правил исчисления высказываний следует, что все правильно построенные формулы типа <P V ~P> - теоремы.

Это — простой пример того случая, когда утверждение внутри системы и утверждение о системе противоречат друг другу. Возникает вопрос: действительно ли система верно отражает саму себя? Соответствует ли «отраженная метаматематика», существующая внутри ТТЧ, «обыкновенной», повседневной математики? Это было одним из вопросов, интересовавших Гёделя, когда он писал свою статью. В частности, он был заинтересован в том, возможно ли доказать в «отраженной метаматематике» непротиворечивость ТТЧ. Вспомните, что доказательство непротиворечивости систем было важным философским вопросом того времени. Гёдель нашел простой способ выразить высказывание «ТТЧ непротиворечива» в виде формулы ТТЧ; после чего он показал, что эта формула (как и все другие формулы, выражающие похожую идею) является теоремой ТТЧ только при одном условии: если ТТЧ противоречива. Этот еретический результат был тяжелым ударом для оптимистов, считавшим, что возможно найти строгое доказательство непротиворечивости математики.

Как можно выразить высказывание «ТТЧ непротиворечива» в самой ТТЧ? Опираясь на простой факт: противоречивость означает, что две формулы, x и ~x, одна из которых — отрицание другой, одновременно являются теоремами. Но если они обе — теоремы, тогда, согласно исчислению высказываний, все правильно сформированные формулы — теоремы. Таким образом, чтобы доказать непротиворечивость ТТЧ, достаточно доказать нетеоремность единственного высказывания ТТЧ. Следовательно, один возможный способ выразить непротиворечивость ТТЧ - это высказывание типа «формула ~0=0 не является теоремой ТТЧ». Такое высказывание уже было предложено в качестве упражнения несколькими страницами ранее. Вот что у нас должно получиться:

~Eа:ПАРА-ДОКАЗАТЕЛЬСТВА-ТТЧ{а,SSSSS…SSSSSO/a'}

.                                                     |_________|

.                                                  «S» 223666111666 раз

Путем длинных, но несложных рассуждений можно доказать, что пока ТТЧ остается непротиворечивой, ее клятва в собственной непротиворечивости — не теорема. Таким образом, ТТЧ весьма сильна в выражении идей, но слабовата в их доказательстве. Это очень интересный результат, если метафорически приложить его к проблеме человеческого самосознания.

ТТЧ страдает ω-неполнотой

От какой именно разновидности неполноты «страдает» ТТЧ? Мы вскоре увидим, что речь идет о неполноте типа «омега», определенной в главе VIII. Это означает, что существует некая бесконечная пирамидальная семья строчек, каждая из которых является теоремой — но при этом соответствующая «итоговая» строчка теоремой не является. Эту итоговую не-теорему найти нетрудно:

~Aа:~Eа':<ПАРА-ДОКАЗАТЕЛЬСТВА-ТТЧ{а,а'}

ΛARITHMOQUINE{SS… SSSO/a'',a'}>

.                       |_____|

.                     «S» d раз

Чтобы понять, почему эта строчка — не теорема ТТЧ, заметьте, что она крайне напоминает саму G — на самом деле, согласно правилу замены ТТЧ, от нее до G — лишь один шаг. Следовательно, если бы она была теоремой, то нам бы пришлось признать теоремность G. Теперь постараемся показать, что все строчки в пирамидальной семье на самом деле являются теоремами. Мы можем легко их записать:

~Eа':<ПАРА-ДОКАЗАТЕЛЬСТВА-ТТЧ{O/а,а}ΛARITHMOQUINE{SSS…SSSO/а",а}>

~Eа':<ПАРА-ДОКАЗАТЕЛЬСТВА-ТТЧ{SO/а,а}ΛARITHMOQUINE{SSS…SSSO/а",а}>

~Eа':<ПАРА-ДОКАЗАТЕЛЬСТВА-ТТЧ{SSO/а,а}ΛARITHMOQUINE{SSS…SSSO/а",а}>

~Eа':<ПАРА-ДОКАЗАТЕЛЬСТВА-ТТЧ{SSSO/а,а}ΛARITHMOQUINE{SSS…SSSO/а",а}>

*   *

*   *

*   *

Что утверждает каждая из этих строчек? Вот их соответствующие переводы.

«0 и арифмоквайнификация d — не пара доказательства ТТЧ».

«1 и арифмоквайнификация d — не пара доказательства ТТЧ».

«2 и арифмоквайнификация d — не пара доказательства ТТЧ».

«3 и арифмоквайнификация d — не пара доказательства ТТЧ».

«4 и арифмоквайнификация d — не пара доказательства ТТЧ».

*   *

*   *

*   *

Каждое из этих утверждений говорит о том, формируют ли два определенных числа пару доказательства, или нет. (С другой стороны, G говорит о том, является ли одно определенное число. числом-теоремой, или нет.) Поскольку G — не теорема, не существует такого числа, которое составляло бы пару доказательства с Гёделевым номером G. Таким образом, каждое из утверждений пирамидальной семьи истинно. Основная идея в том, что свойство являться парой доказательств примитивно рекурсивно и, следовательно, представимо — поэтому каждое из утверждений выше должно быть переводимо в теорему ТТЧ, что означает, что все утверждения в нашей бесконечной пирамидальной семье — теоремы. И это показывает, почему ТТЧ ω-неполна.

Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда, относящееся к жанру Математика. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)