Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
(1) является ли предполагаемая деривация, кодом которой является m, «законной»;
(2) если это так, то совпадает ли последняя строка деривации со строчкой, кодом которой является n.
Шаг (2) тривиален; шаг (1) тоже довольно прямолинеен, поскольку для него не нужен бесконечный поиск и в нем не спрятаны никакие петли. Вспомните примеры из системы MIU и просто мысленно замените правила MIU и ее аксиому на правила и аксиомы ТГЧ. В обоих случаях алгоритм один и тот же:
Следить за деривацией, переходя от строчки к строчке.
Отмечать строчки, являющиеся аксиомами.
Для каждой строчки, НЕ являющейся аксиомой, проверять, следует ли она из предыдущих строчек предполагаемой деривации.
Если все не-аксиомы следуют по правилам вывода из предыдущих строчек, значит, перед вами — законная деривация; в противном случае, перед вами — фальшивка.
На каждой ступени здесь совершается ограниченное число вполне определенных действий.
Свойство «пара-доказательности» примитивно рекурсивно …Я делаю такой упор на ограниченность петель потому, что, как вы могли догадаться, я собираюсь доказать
ОСНОВНОЙ ФАКТ 1: Свойство пара-доказательности — это примитивно рекурсивное свойство теории чисел; следовательно, оно может быть проверено на программе Блупа.
Необходимо отличать это свойство от его близкого теоретико-численного родственника: свойства числа-теоремы. Если мы говорим, что n — число-теорема, мы имеем в виду. что существует некое число m, такое, что оно составляет с n пару доказательства. (Кстати, это приложимо как к ТТЧ, так и к системе MIU; пожалуй, полезно иметь в виду обе системы, пользуясь MIU как прототипом.) Чтобы проверить, является ли n числом-теоремой, вам придется проверить всех потенциальных пара-доказательных «партнеров» m — и именно тут вы вполне можете запутаться в бесконечной петле. Невозможно определить, сколько вам придется искать, пока вы наткнетесь на число, составляющее пару доказательства с n. Эта проблема возникает во всех системах, сочетающих удлиняющие и укорачивающие правила; подобная комбинация сообщает системе некоторую непредсказуемость.
Нам может пригодиться сейчас пример Вариации Гольдбаха. Проверить является ли пара чисел (m, n) Черепашьей парой нетрудно; это значит, что как m так и n+m должны быть простыми числами. Эта проверка несложна, потому что свойство простоты — примитивно рекурсивно, то есть может быть обнаружено при помощи конечного теста. Но если мы хотим узнать, обладает ли n свойством Черепахи, тогда нам нужно ответить на вопрос «существует ли некое число m, формирующее вместе с n Черепашью пару?» Это снова уводит нас в область неведомого, в страну бесконечной MU-петельности.
… и, следовательно, представлено в ТТЧТаким образом, из Основного Факта 1 мы можем вывести
ОСНОВНОЙ ФАКТ 2: Свойство формировать пару доказательства может быть проверено на Блупе — следовательно, оно представлено в ТТЧ некоей формулой с двумя свободными переменными.
Как и ранее, мы не упоминаем точно, к какой именно системе относятся данные пары доказательств; оказывается, что это не столь важно, потому что оба Основных Факта действительны для любой формальной системы. Это — общее свойство формальных систем: мы всегда можем определить при помощи предсказуемо конечного теста, является ли данная последовательность строк доказательством, или нет. То же верно и для соответствующих арифметических понятий.
Мощь пар доказательстваДля конкретности предположим, что мы имеем дело с системой MIU. Вы, наверное, помните строчку, которую мы назвали МУМОН'ом. На одном из уровней эта строчка интерпретировалась как утверждение «MU — теорема системы MIU.» Можно показать, как МУМОН выражается в ТТЧ с помощью формулы, выражающей понятие пар доказательства в MIU. Давайте сократим эту формулу, в существовании которой нас уверяет Основной Факт 2, следующим образом:
ПАРА-ДОКАЗАТЕЛЬСТВА-MIU{а, а'}
Поскольку это — свойство двух чисел, оно представлено формулой с двумя свободными переменными. (В этой главе мы будем пользоваться строгой версией ТТЧ и нам надо будет различать между переменными а, а', а'' и т. д.) Чтобы сказать: «MU — теорема системы MIU», нам придется взять изоморфное высказывание «30 — число-теорема системы MIU» и перевести его в нотацию ТТЧ. Это несложно, если призвать на помощь наше условное сокращение (вспомните главу VIII, в которой, чтобы указать замену каждого а' на, символ числа, слева от этого символа мы писали «/а'»):
Eа: ПАРА-ДОКАЗАТЕЛЬСТВА-MIU{a,SSSSSSSSSSSSSSSSSSSSSSSSSSSSSS0/a'}
Посчитайте С: их 30 штук. Заметьте, что это — закрытое высказывание ТТЧ, поскольку одна свободная переменная квантифицированна, а другая заменена на символ числа. То, что мы здесь проделали, весьма интересно. Благодаря Основному Факту 2 мы получили возможность говорить о парах доказательства: теперь мы выяснили, как мы можем говорить о числах-теоремах: для этого нужно всего лишь добавить в начале квантор существования! Более точным переводом данной выше строчки было бы «существует некое число а, которое составляет пару доказательства с 30 в качестве второго элемента».
Предположим, что мы захотели бы проделать нечто похожее в ТТЧ — например, выразить высказывание «0=0 — это теорема ТТЧ». Мы можем сократить существующую (согласно Основному Факту 2) формулу аналогичным образом (опять с двумя свободными переменными):
ПАРА-ДОКАЗАТЕЛЬСТВА-ТТЧ{а, а'}
(Эта сокращенная формула ТТЧ читается так: «Натуральные числа а и а' являются парой доказательства».) Следующим шагом является перевод нашего высказывания в теорию чисел, следуя модели МУМОН. Получается высказывание «существует некое число а, которое составляет пару доказательства с 666,111,666 в качестве второго элемента». Это выражается следующей формулой ТТЧ:
Ea:ПАРА-ДОКАЗАТЕЛЬСТВА-ТТЧ{a, SSSSS … SSSSS0/а'}
. |________|
. (Очень много S - целых 666,111.666!)
Это — закрытое высказывание ТТЧ. (Давайте назовем его Джошу — скоро узнаете, почему.) Мы убедились, что возможно говорить не только о примитивно рекурсивном понятии пар доказательства ТТЧ, но и о родственном, хотя и более сложном понятии чисел-теорем ТТЧ.
Чтобы убедиться, насколько хорошо вы поняли эти идеи, попробуйте перевести в ТТЧ следующие высказывания мета-ТТЧ:
(1) 0=0 не является теоремой ТТЧ.
(2) ~0=0 — теорема ТТЧ.
(3) ~0=0 не является теоремой ТТЧ.
Каким образом решения отличаются от примеров, данных выше, и друг от друга? Вот еще несколько упражнений на перевод:
(4) ДЖОШУ — теорема ТТЧ. (Получившуюся строчку ТТЧ назовите МЕТА-ДЖОШУ.)
(5) МЕТА-ДЖОШУ — теорема ТТЧ. (Получившуюся строчку ТТЧ назовите МЕТА-МЕТА-ДЖОШУ.)
(6) МЕТА-МЕТА-ДЖОШУ — теорема ТТЧ.
(7) МЕТА-МЕТА-МЕТА-ДЖОШУ — теорема ТТЧ.
(и т. д., и т. п.)
Пример (5) показывает, что высказывания мета-мета-ТТЧ могут быть переведены в нотацию ТТЧ; пример (6) показывает то же самое для мета-мета-мета-ТТЧ, и т. д.
Важно помнить о разнице между выражением свойства, и его представлением. Например, свойство численно-теоремности ТТЧ выражено следующей формулой:
Eа: ПАРА-ДОКАЗАТЕЛЬСТВА-ТТЧ {а, а'}
Перевод: «а' — число-теорема ТТЧ». Однако у нас нет гарантии того, что эта формула действительно представляет данное понятие, поскольку у нас нет гарантии того, что это свойство примитивно рекурсивно — на самом деле, у нас есть некоторые основания полагать, что это не так! (Наши подозрения вполне обоснованы. Свойство являться числом-теоремой ТТЧ — НЕ примитивно рекурсивно, и такой формулы ТТЧ, которая могла бы его выразить, не существует!) С другой стороны, свойство являться парой доказательства, являясь примитивно рекурсивным, одновременно выразимо и представимо с помощью формулы, данной выше.
Замена подводит нас ко второй идееПредыдущее обсуждение показало нам, как ТТЧ может «анализировать» понятие теоремности ТТЧ. Это — основа первой части доказательства. Перейдем теперь ко второй идее доказательства, путем развития понятия, позволяющего сконцентрировать этот «самоанализ» в одной единственной формуле. Для этого давайте посмотрим, что случается с Гёделевым номером какой-либо формулы, когда ее структура слегка меняется. Рассмотрим следующее изменение:
замена всех свободных переменных на определенные символы чисел.
Ниже, в левой колонке, даны два примера этой операции; в правой колонке показаны параллельные изменения в Гёделевых номерах.
Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда, относящееся к жанру Математика. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

