Дж. Кеоун - OrCAD PSpice. Анализ электрических цепей
Рис. 6.38
6.6. При обсуждении низкочастотной реакции усилителя в этой главе мы установили, что обычно желательно, чтобы спад напряжения в конце импульса не превышал 10%. Приближенная формула для определения спада:
где tL=1/(2πRC), а f — частота прямоугольного напряжения. Используйте методику, описанную в тексте, чтобы при воздействии прямоугольного напряжения с частотой 60 Гц найти следующее:
а) относительный спад выходного напряжения при R=1,59 Ом и С=10 мкФ;
б) значение С, которое требуется, чтобы создать относительный спад приблизительно в 10%?
Проверьте ваши ответы с помощью графика, полученного в Probe.
7. Ряды Фурье и гармонические составляющие
Одна из сильных сторон PSpice заключается в способности анализировать системы с нелинейными характеристиками, например, исследовать усилитель мощности при подаче на его вход сигнала с высокой амплитудой. При этом усилитель начинает работать на нелинейной части характеристики, что приводит к искажениям в выходном напряжении. В этой главе мы выясним, насколько велики искажения, проанализировав гармонический состав выходного напряжения усилителя.
Основная и вторая гармоники
Начнем с простой схемы, позволяющей рассмотреть основные концепции, которые мы используем в дальнейшем для более сложных схем. На рис. 7.1 показано входное напряжение VBX.p=1 В, это синусоидальная волна с частотой f=1 кГц и максимальным значением 1 В (действующим значением Vвх=√2). Чтобы обеспечить выходное напряжение, которое является нелинейной функцией входного, в качестве усилителя используется источник напряжения Е, управляемый напряжением (ИНУН). В этом примере зависимость выходного напряжения от входного отображается функцией
f(x) = 1 + х + х².
Рис. 7.1. Схема с нелинейной связью входного и выходного напряжений
Эта функциональная связь отображается в команде Е c помощью полиномиальных коэффициентов. Общий вид полинома:
f(х) = k0 + k1х + k2х².
Чтобы перейти к зависимости нашего примера, используем три последних числа команды ввода Е. Мы хотим провести гармонический анализ, чтобы увидеть, какие из гармоник присутствуют в выходном напряжении, но сначала попробуем определить, чего же мы должны ожидать.
Прежде чем перейти к разложению временных зависимостей в ряд Фурье, необходимо выполнить анализ для переходных процессов (программу transient analysis в PSpice).
Поэтому необходимо использовать обе команды .TRAN и .FOUR. Обычно выполняется анализ переходных процессов для полного периода основной частоты. В этом примере f=1 кГц; следовательно, Т=1/f=1 мс. Гармонический анализ отражает частотные компоненты вплоть до девятой гармоники. Для большинства целей этого должно быть более чем достаточно. Если показывать более высокие гармоники, они не будут иметь большого значения из-за накопления ошибки округления в результатах.
Чтобы дать более подробное описание входного напряжения VBX, используем форму sin для описания источника. Параметры sin(а, b, с,…) означают: а — постоянная составляющая, b — максимальное значение, с — частота, d — задержка, е — коэффициент затухания и f — фаза.
При включении во входной файл команды .FOUR производится гармонический анализ, дающий разложение в ряд Фурье для результатов анализа переходного процесса. Параметры для этой команды включают частоту основной гармоники и переменные, для которых будет получено разложение. В этом примере такими переменными будут периодические функции входного V(1) и выходного V(2) напряжений. Входной файл:
Fourier Analysis; Decomposition of Polynomial
Vin 1 0 sin(0 1 1000); аргументы для смещения, максимума и частоты
Rin 1 0 1MEG
Е 2 0 poly(1) 1,0 1 1 1; последние 3 значения для k0, k1, k2
Rout 2 0 1MEG
.TRAN 1us 1ms
.FOUR 1000 V(1) V(2)
.PROBE
.END
Проведите анализ, затем получите графики V(1) и (V)2. Убедитесь, что V(1) — точная копия входного напряжения VВХ. Выходное напряжение должно показать компоненту постоянного тока и сложную волну с максимумом в 3 В. Из теоретического изучения рядов Фурье можно заключить, что этот график напоминает периодическую волну, состоящую из основной и второй гармоник. Целесообразно распечатать копию этого графика для будущего изучения. На рис. 7.2 показаны эти графики.
Рис. 7.2. Графики напряжений v1 и v2 для схемы на рис. 7.1
Рассмотрим также выходной файл для этой схемы (рис. 7.3), на котором показаны следующие значения для напряжений узлов: V(1)=0 В и V(2)=1 В. Это означает, что хотя входной сигнал не имеет смещения, выходное напряжение имеет смещение V(2)=1 В.
На рис. 7.3 в таблице компонентов ряда Фурье для V(1) не все компоненты имеют реальные значения. Так, значение постоянной составляющей теоретически должно быть равно нулю, но анализ дает очень малое значение 3.5Е-10, не равное в точности нулю из-за накопления ошибки округления.
Fourier Analysis; Decomposition of Polynomial
Vin 1 0 sin(0 1 1000); arguments are offset, peak, and frequency
Rin 1 0 1MEG
E 2 0 poly(1) 1,0 1 1 1; last 3 1s are for k0, k1, k2
Rout 2 0 1MEG
.TRAN 1us 1ms
.FOUR 1000 V(1) V(2)
.PROBE
.END
NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
( 1) 0.0000 ( 2) 1.0000
FOURIER COMPONENTS OF TRANSIENT RESPONSE V(1)
DC COMPONENT = 2.936647E-08
HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED
NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)
1 1.000E+03 1.000E+00 1.000E+00 1.115E-06 0.000E+00
2 2.000E+03 1.994E-08 1.994E-08 -9.308E+01 -9.308E+01
3 3.000E+03 7.381E-09 7.381E-09 -9.083E+01 -9.083E+01
4 4.000E+03 4.388E-09 4.388E-09 -8.993E+01 -8.993E+01
5 5.000Е+03 3.134Е-09 3.134Е-09 -9.107Е+01 -9.107Е+01
6 6.000E+03 1.525E-09 1.525E-09 -6.706E+01 -6.706E+01
7 7.000E+03 1.511E-09 1.511E-09 -1.392E+02 -1.392E+02
8 8.000E+03 1.237E-09 1.237E-09 -3.990E+01 -3.990E+01
9 9.000E+03 7.642E-10 7.642E-10 3.320E+01 3.320E+01
TOTAL HARMONIC DISTORTION = 2.208405E-06 PERCENT
FOURIER COMPONENTS OF TRANSIENT RESPONSE V(2)
DC COMPONENT = 1.500000E+00
HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED
NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)
1 1.000E+03 1.000E+00 1.000E+00 -2.888E-07 0.000E+00
2 2.000E+03 5.000E-01 5.000Е-01 -9.000E+01 -9.000E+01
3 3.000E+03 7.971E-08 7.971E-08 -1.546E+02 -1.546E+02
4 4.000E+03 5.126Е-08 5.126Е-08 -1.439E+02 -1.439E+02
5 5.000E+03 3.918E-08 3.918E-08 -1.420E+02 -1.420E+02
6 6.000E+03 3.327E-08 3.327E-08 -1.299E+02 -1.299E+02
7 7.000Е+03 3.606E-08 3.606E-08 -1.268Е+02 -1.268E+02
8 8.000E+03 2.889E-08 2.859E-08 -1.316E+02 -1.316E+02
9 9.000E+03 2.584E-08 2.584E-08 -1.189Е+02 -1.189Е+02
TOTAL HARMONIC DISTORTION = 4.999939E+01 PERCENT
Рис. 7.3. Выходной файл с результатами анализа схемы на рис. 7.1
Первая гармоника представляет собой основную гармонику при f=1 кГц. Показана амплитуда первой гармоники ряда Фурье и ее фаза 2.4Е-7 (тоже почти ноль). Если считать, что этот компонент выражен формулой
bnsin(nx),
то это означает, что b1=1, n=1, где индекс 1 соответствует основной частоте. Другие гармоники могут игнорироваться, так как их амплитуды на много порядков меньше основной гармоники. Именно основная гармоника отражена на графике V(1) в Probe, получена она из данных на рис. 7.3.
Другая таблица компонентов Фурье на рис. 7.3 относится к V(2). При просмотре различных гармоник обратите внимание, что имеется постоянная составляющая в 1,5 В. Почему 1,5 В? Составляющая k0=1 В дает только часть этого значения, остальные же 0,5 В связаны со второй гармоникой. Теория показывает, что при гармоническом искажении по второй гармонике в выходном напряжении кроме собственно второй гармоники с амплитудой b2 появляется и связанная с искажениями по второй гармонике постоянная составляющая со значением b0=b2. Амплитуда основной частоты в разложении равна b1=1 В, амплитуда второй гармоники b2=0,5 В, ее фазовый угол составляет -90°. Более высокие гармоники имеют намного меньшую величину и их можно не учитывать.
В качестве упражнения по гармоническому синтезу вы можете нарисовать отдельные гармоники и сложить их, чтобы предсказать результат, который вы получите в Probe для V(2). Не забудьте учесть постоянную составляющую и соответствующие амплитуды и фазы для основной и второй гармоник. После того как вы нарисуете результирующее колебание, вам, несомненно, будет приятно узнать, что PSpice может сделать эту нудную работу за вас.
Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Дж. Кеоун - OrCAD PSpice. Анализ электрических цепей, относящееся к жанру Программы. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.


