`
Читать книги » Книги » Компьютеры и Интернет » Программы » Дж. Кеоун - OrCAD PSpice. Анализ электрических цепей

Дж. Кеоун - OrCAD PSpice. Анализ электрических цепей

1 ... 43 44 45 46 47 ... 107 ВПЕРЕД
Перейти на страницу:

Рис. 6.24. График напряжения на R2 в схеме на рис. 6.23

Прежде чем выйти из программы Probe, убедитесь, что токи и напряжения в момент t=2 с имеют следующие значения:

vc(2 с) = 5,2778 В;

vL(2 с) = –3,94 В;

ic(2 с) = –2,428 А;

iL(2 с) = –0,675 А.

Токи показаны на рис. 6.25.

Рис. 6.25. Графики токов в ветвях схемы на рис. 6.23

Цепи с источником тока

На рис. 6.26 показана схема с источником тока, обеспечивающим установившееся значение в ЗА при t<0. В момент t=0 ток становится равным 0. Прежде чем приступить к анализу на PSpice, определим начальные условия для L и С. До момента t=0 ток через R=3 А, в то время как ток через другую ветвь равен нулю, так как конденсатор С является разрывом для постоянного тока. Таким образом iL(0)=0. Падение напряжения на R равно 2×3 = 6 В, с полярностью, показанной на рис. 6.27. Поскольку при постоянном токе напряжение на L равно нулю, напряжение vc(0)=6 В. Приведенной информации достаточно, чтобы выполнить анализ на PSpice. Входной файл:

Initial Conditions from Current Source

R 1 0 2

L 1 2 3H

N 2 0 4000mF IC=6V

.TRAN 0.001ms 24s UIC

.PROBE

.END

Рис. 6.26. Схема с источником тока

Рис. 6.27. Схема замещения для момента t = 0

Выполните анализ и получите графики напряжений на резисторе и конденсаторе. Проверьте начальные условия для обоих напряжений. В качестве упражнения убедитесь, что для момента t1=4 с напряжения vc(t1)=4,2095 В и vR(t1)=4,5476 В. Можете ли вы сказать, каково будет напряжение vL(t1), не получая график напряжения vL?

Используйте второй закон Кирхгофа, чтобы найти это значение. Напряжения на резисторе и конденсаторе показаны на рис. 6.28. Теперь получите график iC(t). Заметьте, что этот ток растет от нулевого начального значения до значения тока в катушке. Убедитесь, что iC(4 с)=–2,2738 А. Этот ток протекает через каждый элемент против часовой стрелки. Убедитесь также, что максимальный (по модулю) ток imax=-2,313 достигается при t=3,48 с.

Рис. 6.28. Напряжения на элементах схемы на рис. 6.27 

Мостовые схемы с ненулевым начальным током

В схеме на рис. 6.29 ключ размыкается при t=0. Схема замещения до размыкания показана на рис. 6.30. В ней катушка индуктивности заменена коротким замыканием, при этом напряжения на R1 и R3 равны 6 В, что приводит к прохождению тока в 2 А через R1 и тока в 3 А через R3. Поскольку в ветви конденсатора ток отсутствует, ток в катушке индуктивности также должен быть равен 3 А. Так как напряжение V(1,3) равно нулю, то и vc равно нулю. Эта информация позволяет нам задать начальные условия для анализа на PSpice, приводя к следующему входному файлу:

Switch Opening in Bridge Circuit

R1 0 1 3

R2 1 2 1

R3 3 0 2

L 1 3 3H IС = 3A

N 2 3 2000mF

.TRAN 0.001ms 16s UIC

.PROBE

.END

Рис. 6.29. Схема с размыканием ключа в момент t = 0

Рис. 6.30. Схема замещения для момента размыкания ключа (t < 0) 

Проведите анализ и проверьте следующее: iC(0)=–2,5 A, iL(0)=3 А, iR3(0)=0,5 A, v12(0)=–2,5 В, v23(0)=0 и v13(0)=–2,5 В (здесь v12(0) означает v(1, 2) при t=0). Графики токов показаны на рис. 6.31, а графики напряжений — на рис. 6.32.

Рис. 6.31. Графики токов в схеме на рис. 6.29

Рис. 6.32. Графики напряжений в схеме на рис. 6.29 

В качестве упражнения определите iC при t=0, воспользовавшись вторым законом Кирхгофа для контура, содержащего R1, R2, R3 и С

Звенящий контур

Определим реакцию на прямоугольное входное напряжение цепи, представленной на рис. 6.33. Входное напряжение резко изменяется от 0 до 1 В, затем в момент t=2 мс уменьшается на 2 В, достигая значения -1 В, затем в момент времени t=4 мс снова резко изменяется до 1 В. Задача состоит в том. чтобы определить, насколько точно напряжение на RL воспроизводит входное прямоугольное напряжение. Входной файл:

Ringing Circuit

Vs 1 0 PWL(0s, 0V 0.01ms, 1V 2ms, 1V 2.01ms, -1V 4ms, -1V 4.01ms, 1V)

Rs 1 2 1

L 2 3 10mН

RL 3 0 333.3

N 3 0 0.1uF

.TRAM 0.0 5ms 6ms

.PROBE

.END

Рис. 6.33. Звенящий контур

График V(3), полученный в Probe, показан на рис. 6.34. Вы можете получить также график VS, чтобы увидеть разницу в этих двух графиках. Прежде чем выйти из Probe, удалите графики напряжений и получите графики для каждою из токов. Если вам интересно, получите также I(C). Графики токов должны дать вам лучшее понимание процессов в схеме. Проведите анализ снова, уменьшив на порядок емкость С, и сравните результаты.

Рис. 6.34. Графики выходного напряжения в звенящем контуре

Задачи 

6.1. Параметры элементов схемы, показанной на рис. 6.35: V=10 B, R1=R=1 кОм и от С=200 мкФ. Получите график vc(t) на интервале от момента размыкания ключа до момента достижения напряжением на конденсаторе нулевого значения. Проведите необходимый анализ на PSpice и получите в Probe график vc.

Рис. 6.35

6.2. Параметры элементов для схемы на рис. 6.36: V=10 В, R1=R=100 Ом и L=2 Гн. Получите график vL(t) на интервала от момента размыкания ключа до момента снижения напряжения на катушке индуктивности до нуля. Проведите анализ на PSpice и получите в Probe график vL.

Рис. 6.36

6.3. Параметры элементов для схемы с двумя различными накопителями энергии, показанной на рис. 6.37: V=20 В, R=100 Ом, L=20 мГн и С=2 мкФ. Получите временную зависимость тока после размыкания ключа. Поскольку значение R в этой схеме соответствует слабому затуханию, график должен содержать, по крайней море, один полный период колебаний.

Рис. 6.37 

6.4. а) Увеличьте значение R в задаче 6.3, чтобы создать критическое затухание, и получите графики токов и составляющих напряжений. Найдите максимальные положительные и отрицательные значения токов.

б) Задав значение R=250 Ом, повторите предыдущее задание а). Найдите максимальные положительные и отрицательные значения всех составляющих напряжений.

6.5. На высоких частотах необходимо учитывать емкость на выходе усилителя напряжения. На рис. 6.38 выходная емкость составляет С=1 нФ и R=10 кОм. При амплитуде приложенного напряжения в 1 В и tp=100 мкс выходное напряжение должно быть достаточно близкой копией входного импульса.

а) Используйте метод, описанный в разделе «Отклик на единичное воздействие в усилителях», чтобы определить характер выходного напряжения. Используйте Probe, чтобы выяснить, является ли выходной импульс напряжения на конденсаторе С достаточно близкой копией входного импульса.

б) Если вы хотите получить более точную копию входного напряжения, попробуйте изменить значение tp и выполнить анализ снова. Каковы значения tH для пунктов а) и б) задания?

Рис. 6.38

6.6. При обсуждении низкочастотной реакции усилителя в этой главе мы установили, что обычно желательно, чтобы спад напряжения в конце импульса не превышал 10%. Приближенная формула для определения спада:

где tL=1/(2πRC), а f — частота прямоугольного напряжения. Используйте методику, описанную в тексте, чтобы при воздействии прямоугольного напряжения с частотой 60 Гц найти следующее:

а) относительный спад выходного напряжения при R=1,59 Ом и С=10 мкФ;

1 ... 43 44 45 46 47 ... 107 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Дж. Кеоун - OrCAD PSpice. Анализ электрических цепей, относящееся к жанру Программы. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)