Читать книги » Книги » Старинная литература » Европейская старинная литература » Этимологии. Книги I–III: Семь свободных искусств - Исидор Севильский

Этимологии. Книги I–III: Семь свободных искусств - Исидор Севильский

Читать книгу Этимологии. Книги I–III: Семь свободных искусств - Исидор Севильский, Исидор Севильский . Жанр: Европейская старинная литература.
Этимологии. Книги I–III: Семь свободных искусств - Исидор Севильский
Название: Этимологии. Книги I–III: Семь свободных искусств
Дата добавления: 12 ноябрь 2023
Количество просмотров: 213
(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
Читать онлайн

Этимологии. Книги I–III: Семь свободных искусств читать книгу онлайн

Этимологии. Книги I–III: Семь свободных искусств - читать онлайн , автор Исидор Севильский

Самое известное сочинение «первого энциклопедиста средневековья» Исидора, епископа Севильского (ок. 570–636 гг.), представляет собой всеохватывающую систему человеческого знания, ставшую связующим звеном между духовным миром античности и последующими эпохами. Предлагаемый читателю перевод первых трех из двадцати книг охватывает область науки, которую в средневековых университетах было принято именовать «семью свободными искусствами», и является древним учебником по грамматике латинского языка, риторике, логике, арифметике, геометрии, теории музыки и астрономии. Впервые для русскоязычного читателя эти дисциплины представлены такими, какими их видели преподаватели и учащиеся в средние века. Автор составлял свои книги по материалам античной науки, и еще шире — всего культурного универсума античности, систематизируя, классифицируя его и преобразуя в учебных целях. Издание предназначено для широкого круга читателей, интересующихся духовной культурой античности и средневековья, снабжено статьей, примечаниями и указателями.

1 ... 96 97 98 99 100 ... 113 ВПЕРЕД
Перейти на страницу:
et altitudine continentur, ut est cubus, cuius species quinque in piano.) Место, испорченное в рукописи. Вся фраза, начиная с «Figurae solidae...» (Телесные фигуры...), помещена в начало главы 12, но определение объемных фигур явно должно относиться к главе И. Непонятно, хочет ли Исидор сказать здесь, что существует пять твердых (solidae) фигур на плоскости, или, завершив определение объемных фигур и проиллюстрировав это определение кубом, он желает теперь перейти к детальному рассмотрению плоских фигур, упомянутых в гл. 11, §2. Второе вероятнее, поэтому мы предлагаем читателю вариант, в котором заголовок главы 12 разбивает предложение так, что «cuius species...» (разновидностей коих...) относится к геометрическим фигурам вообще.

497

В тексте издания Линдсея рисунки отсутствуют, в рукописи — тоже, хотя для них оставлено много пустого места. Поэтому рисунки приведены по изданию Ф. Аревало, который пишет, что нашел их в первом издании «Этимологий» (без года и места издания). Нужно иметь в виду, что рис. 4–5 изображают треугольники очень неточно: из них первый должен быть прямоугольным, а второй — равносторонним. Мы оставляем все как есть, включая грамматические ошибки, чтобы показать, с какими трудностями реально сталкивался при чтении Исидора средневековый читатель.

498

Четырехсторонняя фигура — это квадрат. Здесь Исидор смешивает род геометрической фигуры, а именно четырехугольник, с ее частным случаем — квадратом.

499

Διὰ αναθετω̂ν γραμμω̂ν — досл. греч. «между поставленными чертами». Сегодня мы знаем минимум шесть видов четырехугольников: правильный четырехугольник (квадрат), ромб, прямоугольник, параллелограмм, трапецию и неправильный четырехугольник; Исидор знал два, причем уже невозможно понять, где он усматривал различия между «четырехсторонней фигурой» и «фигурой διὰ αναθετω̂ν γραμμω̂ν». Нелепое пояснение, что «четырехсторонняя фигура» есть квадратная и позднейший рисунок, изображающий «фигуру διὰ αναθετω̂ν γραμμω̂ν» в виде прямоугольника, только ухудшают ясность. Может быть, имелось в виду, напротив, что «квадрат — это четырехсторонняя фигура», а «фигура διὰ αναθετω̂ν γραμμω̂ν» — прямоугольник или параллелограмм, или трапеция, а может быть, Исидор просто не понимал, что писал. Аревало дает конъектуру dia catheton grammon («между косых черт»), то есть это та же трапеция.

500

Греч.: ορθογώνιον (подразумевается τρίγωνον — треугольник). Кажется, Исидор смешивает прямой угол и прямоугольный треугольник, делая ту же ошибку, что и с четырехугольником.

501

Ισόπλευρον (подразумевается τρίγωνον) — греч. «равносторонний треугольник». Текст Исидора не вполне ясен: Isopleuros figura plana, recta et subter constituta. Вероятно, «subter constituta» — это ссылка на рисунок, который должен был в рукописи следовать ниже.

502

Куб — это собственно телесная фигура, которая содержится в длине, ширине и высоте. Такое определение, конечно, не дает возможность отличить куб от прочих тел. Для примера приведем определение Евклида: «Куб — это объемная фигура, состоящая из шести равных квадратов» (Eucl., Elem., XIII, 25).

503

Цилиндр — это квадратная фигура, имеющая сверху полукруг. Откуда Исидор взял это невероятное определение или как он сам до него дошел, остается тайной. Возможно, это описание двухмерного изображения цилиндра (см. рис. 8). Евклид определяет цилиндр как фигуру вращения: «Когда одна из сторон... прямоугольного параллелограмма остается на месте, а сам параллелограмм поворачивается вокруг и возвращается в положение, откуда его начали двигать, получается фигура цилиндр» (Eucl., Elem., XI, 21).

504

Конус — это фигура, которая сужается от широкого основания, как прямоугольный треугольник. Ср. определение Евклида: «Когда одна из сторон, находящихся у прямого угла в прямоугольном треугольнике, остается на месте, а сам треугольник поворачивается вокруг и возвращается в положение, откуда его начали двигать, получается фигура конус» (Eucl., Elem., XIII, 18). «Определение» Исидора, возможно, просто описывает двухмерное изображение конуса.

505

Пирамида — это фигура, которая остро сходится от широкого основания. У Евклида: «Пирамида — это фигура, состоящая из плоских фигур, строящихся на одной плоской фигуре и сходящихся в точку» (Eucl., Elem., XIII, 12). Пирамида, конечно, не обязана иметь непременно острый угол при вершине, если только «острым» у Исидора не считается всякий угол. Но есть вероятность, что здесь под пирамидой имеется в виду тетраэдр, поскольку в V в. именно так он и назывался, а термин «тетраэдр» был придуман Героном, то есть спустя целых 400 лет после открытия самого этого правильного многогранника; сведения Исидора так или иначе восходят к Никомаху, а неопифагорейцы известны нарочитой архаизацией терминологии.

506

Ci. intra вм. infra.

507

Любое число есть в 10. Это заявление объясняется отчасти употребляющейся у греков системой счисления, в которой числа до 10 включительно записывались одним знаком («цифрой»), а с 11 — двумя и более знаками (исключая кратные 10,100, 1000), отчасти пифагорейскими источниками Исидора. Действительно, у пифагорейцев 10 было «совершенным числом», причем Никомах в «Теологуменах арифметики» (Nic., Theol. ar., 82, 10) приводит обширную цитату из популярной книжки платоника Спевсиппа «О пифагорейских числах» (переложение Филолая), вторая часть которой была посвящена различным уникальным свойствам десятки.

508

Внутри этого круга содержатся контуры всех фигур. Напомним, сегодня мы говорим, что описать окружность (сферу) вокруг какой-либо фигуры, означает найти такую окружность (сферу), на которой лежали бы все углы данной фигуры. Также это понимали и греки. Заметим, что вокруг всех вышеназванных плоских фигур могут быть описаны окружности, если под четырехугольником понимать прямоугольник. Для объемных тел, однако, следовало бы сказать «сфера», причем не вокруг всех пирамид и конусов можно описать сферы, и для конуса вписание в сферу имеет иной смысл. Правда, у нас нет уверенности, что Исидор понимал это именно так. Возможно, он просто имел в виду, что любую фигуру можно заключить в окружность (сферу) достаточно большого радиуса.

509

Границы повершостей — это линии, очертания которгях потому не были установлены среди десяти вышеназванных фигур, что они находятся среди них. (Superficiei vero fines lineae sunt, quorum formae ideo in superioribus decern figuris positae non sunt, quia inter eas inveniuntur.) Место неясное. To ли эти контуры не были упомянуты, потому что они вписываются в окружность («содержатся внутри круга»), как было сказано чуть выше, то ли имеется в виду, что границы фигур содержатся в самих фигурах, как, скажем, окружность — в

1 ... 96 97 98 99 100 ... 113 ВПЕРЕД
Перейти на страницу:
Комментарии (0)