Этимологии. Книги I–III: Семь свободных искусств - Исидор Севильский

Этимологии. Книги I–III: Семь свободных искусств читать книгу онлайн
Самое известное сочинение «первого энциклопедиста средневековья» Исидора, епископа Севильского (ок. 570–636 гг.), представляет собой всеохватывающую систему человеческого знания, ставшую связующим звеном между духовным миром античности и последующими эпохами. Предлагаемый читателю перевод первых трех из двадцати книг охватывает область науки, которую в средневековых университетах было принято именовать «семью свободными искусствами», и является древним учебником по грамматике латинского языка, риторике, логике, арифметике, геометрии, теории музыки и астрономии. Впервые для русскоязычного читателя эти дисциплины представлены такими, какими их видели преподаватели и учащиеся в средние века. Автор составлял свои книги по материалам античной науки, и еще шире — всего культурного универсума античности, систематизируя, классифицируя его и преобразуя в учебных целях. Издание предназначено для широкого круга читателей, интересующихся духовной культурой античности и средневековья, снабжено статьей, примечаниями и указателями.
Ставится задача: если гномон — квадратное число, то какому правилу должно отвечать квадратное число, полученное с его помощью, ведь тогда получится, что квадратное число плюс квадратное число дает квадратное число. Легко заметить, что, если Х — квадратный гномон, то предыдущее квадратное число — (X2–1)/2, а последующее — (X2+1)/2 (поскольку гномон всегда равен 2Y+1, где Y — сторона предыдущего квадрата), где X — нечетное число. Правда, такое решение является частным случаем общей формулы Пифагоровых троек, так как в нем есть дополнительное условие: Z=Y+1, то есть чтобы катет и гипотенуза были бы двумя соседними квадратными числами. Общее решение см., например, в «Началах» Евклида, кн. X, предл. 29, или в «Арифметике» Диофанта, кн. II, задача 8 (та самая, к которой П. Ферма сделал свое знаменитое замечание на полях).
486
Циклические и сферические числа (см. ниже) имеют не столько геометрическую, сколько арифметическую интерпретацию: это степени чисел 5 и 6, которые, как известно, кончаются всегда также на 5 и 6, то есть «возвращаются к себе», говоря словами Кассиодора и Исидора, — и в этом смысле они подобны кругам. Иначе говоря, циклическое число — такое, квадрат которого оканчивается на те же цифры, из которых состоит оно само (например, 25 и 25x25=625), а сферическое число — такое, квадрат и куб которого оканчивается на те же цифры, из которых состоит оно само (например, 6, 6x6=36 и 6x6x6=216).
487
Пирамида — поднимающееся пламя. Имеется в виду греческая этимология слова «пирамида» от πυ̂ρ (огонь, пламя).
488
Глава 8. О различии арифметики, геометрии и музыки. Название главы крайне неудачно: ее следовало бы озаглавить «О различии среднего арифметического, среднего геометрического и среднего гармонического», ибо речь пойдет именно об этих трех средних. Кстати, все три пропорции, по вполне достоверному преданию, были известны опять-таки самому Пифагору, причем Ямвлих приписывает ему также изобретение «музыкальной пропорции» (см. ниже). Наш автор ничего не пишет о знаменитом неравенстве средних: ch ≤ cg ≤ cm, хотя оно было хорошо известно древним, так как очевидно вытекало из геометрического построения всех трех средних величин (см., например в «Математическом собрании» Паппа Александрийского).
489
В арифметике среднее ты ищешь так. Речь о среднем арифметическом двух чисел а и b — числе cm = (а+b)/2. Обобщенно — средним арифметическим n положительных чисел a1, a2, …, an называется число cm = (a1+a2+…+an)/n. Оно потому называется арифметическим, что если не искать среднего между четным и нечетным числом (чего делать не рекомендовалось), такая операция не выводит за пределы множества натуральных чисел (объекта арифметики).
490
При помощи же геометрии так ищешь среднее. Среднее геометрическое двух чисел а и b — это число cg = √ab. В общем случае — средним геометрическим n положительных чисел a1, a2, …, an называется число ck = n√a1a2…an. Для 6 и 9 среднее геометрическое — иррациональное число √72 = 8,4853... Исидор знает иррациональные числа только как геометрические фигуры (см. главу 11, §3), поэтому средних геометрических у него не одно, а два. То есть ищутся два наиболее близких по величине делителя числа ab: в данном случае 8 и 9. Два средних геометрических — это результат позднейшей арифметизации математики. Во времена Евклида среднее геометрическое было одним числом, представляемым в виде отрезка на специальном чертеже.
491
Исидор пишет: «quot media duplicata» — «дважды умноженные средние»
492
При помощи музыки так... Среднее гармоническое двух чисел а и b — это число ch = 2ab/(a+b). В общем случае — средним гармоническим n положительных чисел a1, a2, …, an называется число ch =n/(1/a1+1/a2+…+1/an). Исидор определяет среднее гармоническое через пропорцию: (ch–a):a=(b–ch):b. Пример Исидора также звучит темно: «Utputa VI et VIII; duabus partibus superant, quae duae partes tertia media, octo, superatur ab ultima попа». Мы предлагаем такую реконструкцию: 4...quae duae partes [duodenarii sunt] tertia media, [id est] octo, [quae (media)] superatur ab ultima попа», полагая, что под «третьим средним» имеется в виду среднее гармоническое, третье после арифметического и геометрического. Кроме того, девятка могла возникнуть еще и в связи с «музыкальной пропорцией»: a:ch = cm:b, то есть 6:8=9:12. Вычисления здесь могли быть такими: 8–6=2=6x2/6; 12–9=3=9х2/6. Если бы в конце стояло не 9, а 12, то перевод был бы проще: «[восемь] превосходит [шесть] на две [шестых] части, и на эти же две [шестых] части [от 12], треть, восьмерка превосходится крайними 12-ю. (См. также гл. 23.)
493
Сложно сказать, кому из математиков первому пришла в голову эта мысль (Архимед приписывает ее Евдоксу), но ее блестящее изложение читатель может найти в «Псаммите» Архимеда (см. Архимед. Сочинения / Пер. и комм. И. Н. Веселовского. — М., Физматгиз, 1962).
494
...Каковые суть у Платона числом пять. Исидор, очевидно, путает пять правильных многогранников, о которых говорит Платон в «Тимее» (Plat., Tim., 53с-55с), с пятью видами плоских фигур (см. ниже, гл. 12, §§1–2).
495
Телесные фигуры — это те, которые содержатся в длине, ширине и высоте. На данном месте у Кассиодора кончается содержательная часть (Cass., Inst., II, 6), поэтому все дальнейшее взято Исидором из другого, неизвестного нам, источника. По всей вероятности, им был утраченный еще в раннем средневековье трактат Боэция о геометрии. Впоследствии под его именем ходили два геометрических трактата, пятикнижный и двухкнижный, но оба подложные. Правда, можно предположить, что оригинальный текст Боэция вошел частично и в тот и в другой.
496
Телесные фигуры... разновидностей коих на плоскости пять. (Figurae solidae sunt, quae longitudine, latitudine