Интернет-журнал "Домашняя лаборатория", 2007 №1 - Цыбанова
1/q2n < ε => qn > 1/√ε
Остается получить оценку сверху для qn, причем требуется оценить qn величиной, связанной с Ic. Сделаем это.
Для знаменателей qn подходящих дробей справедливо рекуррентное соотношение (см. [1], стр. 11, формула (7))
qк = aкqк-1 + aкqк-2,
причем по определению полагается q-1 = 0, q0 = 1. Тогда q1 = а1, q2 = a2a1 + 1, q3 = a3a2a1 + a3 + a1 и т. д.
Лемма. Для знаменателей qn верна оценка qn <= 2n-1πn, где πn= Пn i=1= ai.
Доказательство (методом мат. индукции). Для n = 1 утверждение верно, ибо q1 = а1. Предположим, что оценка верна для всех k и n. Тогда
поскольку выражение в круглых скобках не превосходит единицы ибо аn >= 1, аn+1 >= 1. Лемма доказана.
Опираясь теперь на лемму, заключаем, что для аппроксимации числа α с точностью ε должно быть:
1/√ε < qn =< 2n-1Пni-1 ai
Следовательно, используя (2), находим:
Таким образом, учитывая (1), получаем соотношение:
Ic(ε) >= (1/2)∙I2(ε) - n + 3/2
Впрочем, данная оценка довольно груба. Ее можно немного усилить.
С другой стороны, очевидно, qn >= Пn i=1 ai (доказывается тоже индукцией), поэтому если
1/q2n < ε < 1/q2n-1
то
qn-1 < 1/√ε < qn
(5)
и, значит
Поэтому,
Ic(ε) <= 1/2∙I2(ε) + 1/2 + log2 an
Если принять, что 1/q2n < ε, то оценка упрощается:
Ic(ε) <= 1/2∙I2(ε) + 1/2
Таким образом видим, что теоретическая нижняя граница для Ic(ε) — объема данных, потребных для хранения вещественного числа а, оценена нами как сверху (формулы (6) и (6’)), так и снизу (формула (4)). Поэтому в случае больших объемов информации (Ic(ε) —> оо) представление числа в виде цепной дроби требует примерно вдвое меньшего количества бит, т. е. достигаемое сжатие — порядка 50 %.
3. Оценку (6) можно несколько улучшить. Для этого достаточно вместо (3) использовать более точную оценку приближения произвольного числа а подходящими дробями. Именно, ([1]. стр. 30) имеют место неравенства:
(7)
Поэтому если дробь pn/qn — первая из последовательности подходящих дробей, которая приближает число а с точностью ε, то, очевидно, имеют место неравенства:
и в тоже время
Из последнего неравенства вытекает
qn-1qn <= 1/ε (8)
Но
qn-1qn = qn-1(anqn-1 + qn-2) >= anq2n-1
Поэтому (8) превращается в неравенство
каковая оценка является просто уточнением первого из неравенств (5). Поэтому точно так же, как и раньше получаем уточненную оценку для Ic(ε):
Список литературы
[1] А. Я. Хинчин. Цепные дроби. Государственное изд-во физ. — мат. лит-ры. М., 1961.
Задача: Три рыбака ловили рыбу и после ловли заночевали на берегу. Двое рыбаков заснули, а третий решил уехать домой со своей частью улова. Он разделил рыбу на 3 равные части, но при этом одна рыбина оказалась лишней. Он швырнул ее в воду, забрал свою треть и ушел.
Среди ночи проснулся второй рыбак и тоже решил уехать. Не зная, что первый рыбак уже ушел, он тоже поделил всю рыбу на 3 равные части, одна рыбина снова оказалась лишней, он ее тоже выкинул и ушел.
То же произошло и с последним рыбаком: проснувшись, он тоже разделил оставшийся улов на 3 равные части, выкинул одну рыбину и ушел.
Вопрос: какое наименьшее количество рыб могло быть у рыбаков?
Решение П. А. М. Дирака: Рыб было (-2). После того, как первый рыбак выкинул одну рыбину в воду, их осталось (-2) — 1 = -3. Потом он ушел, унося (-1) рыбу. Рыб стало (-3) — (-1) = -2. Второй и третий рыбаки просто повторили поступок своего товарища.
Из книги "Физики продолжают шутить".
На самом деле решение Дирака, хоть и остроумно, но, строго говоря, неверно, и во всяком случае неполно. Приведем полное, "математическое" решение, т. е. найдем ВСЕ решения.
Решение.
Пусть в начале рыб было n0 (количество, после того, как уехало 0 рыбаков). Первый рыбак выбросил одну (лишнюю) рыбину (n0 — > n0 — 1), после чего количество рыбин стало делиться на 3, и взял 1/3 оставшегося улова, и после себя он оставил n1 = (2/3)∙(n0 — 1) рыбин. Аналогичным образом действовали и остальные рыбаки, так что после отъезда 2-го рыбака рыб осталось n2 = (2/3)∙(n1 — 1), а после отъезда 3-го — n3 = (2/3)∙(n2 — 1). Подставляя в последнее равенство выражения для n2 и n1, получаем:
В итоге получаем уравнение, требующее разрешения в целых числах:
8n0 — 27n3 = 38.
Для упрощения расчетов имеет смысл уменьшить входящие в уравнение числа перейдя к новым переменным n0 = n0 + k, n3 = n3. Если взять k = 5, то уравнение превратится в
27n3 — 8n0 = 2. (1)
Это уравнение имеет вид
ах — by = с (1')
т. е. является диофантовым уравнением, и нужно найти все решения данного уравнения. Как это сделать?
Взглянем на уравнение (1') с точки зрения теории сравнений. В самом деле, требуется найти такое число х, что ах отличается от заданного числа с на слагаемое, кратное Ь. Иными словами, разность ах — с делится на Ь, т. е. (ах — с) = ()(mod b) или
ах = c(mod Ь). (1")
То же самое можно выразить словами: "ах сравнимо с с по модулю b" или "ах принадлежит тому же классу вычетов по модулю Ь, что и с". Т. е. мы свели уравнение с двумя неизвестными (х и у) к уравнению с одним неизвестным, поскольку ясно,
Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Интернет-журнал "Домашняя лаборатория", 2007 №1 - Цыбанова, относящееся к жанру Газеты и журналы / Сделай сам / Хобби и ремесла. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.


