`
Читать книги » Книги » Научные и научно-популярные книги » Техническая литература » Сергей Семиков - Баллистическая теория Ритца и картина мироздания

Сергей Семиков - Баллистическая теория Ритца и картина мироздания

Перейти на страницу:

§ 4.16 Неквантовая теория теплоёмкости

Первоначала вещей сначала движутся сами,Следом за ними тела из малейшего их сочетанья,Близкие, как бы сказать, по силам к началам первичным,Скрыто от них получая толчки, начинают стремитьсяСами к движенью затем понуждая тела покрупнее…Те, у которых тесней их взаимная сплоченность, малоИ на ничтожные лишь расстояния прядая порознь,Сложностью самых фигур своих спутаны будучи цепко,Мощные корни камней и тела образуют железаСтойкого, так же, как всё подобного рода.Прочие, в малом числе в пустоте необъятной витая,Прядают прочь далеко и далёко назад отбегают.

Тит Лукреций Кар, "О природе вещей", I в. до н. э. [77]

Явление, очень похожее на вымерзание степеней свободы у газа, обнаружилось и в твёрдых телах, кристаллах. Согласно МКТ и закону Дюлонга-Пти, теплоёмкость твёрдых тел должна равняться 3R, поскольку каждый атом в твёрдом теле должен иметь энергию 3kT. Половина её приходится на энергию движения атома — вдоль трёх осей, а половина — на энергию колебаний атома — вдоль тех же трёх осей (Рис. 172). Опыт показал справедливость закона Дюлонга-Пти в широком интервале температур. Однако, с приближением температуры к абсолютному нулю, теплоёмкость твёрдых тел снижается вплоть нулевой, как от вымерзания степеней свободы (Рис. 173.б). В рамках классической физики и МКТ это не удавалось понять. Лишь квантовая теория дала объяснение феномену. Оно было предложено А. Эйнштейном и уточнено П. Дебаем. Теория эта — сложная, формальная и надуманная. Так, вместо классического максвелловского распределения молекул и атомов по скоростям, вводятся распределения Ферми-Дирака, Бозе-Эйнштейна, привлекаются гипотетические фононы, — возбуждения кристаллической решётки. Впрочем, классически истолковать этот эффект, как полагали, вообще невозможно. И, всё же, предложим простое объяснение феномена.

Реально повторяется ситуация с вымерзанием степеней свободы молекул газа, только в твёрдом теле: при снижении температуры, сковка атомов происходит в огромных масштабах. Всё больше атомов жёстко соединяются друг с другом, обретая новые связи и теряя свободу движений. При охлаждении в теле возникают всё более крупные жёсткие конгломераты из атомов, — как бы гигантские жёсткие молекулы. С понижением T их становится всё меньше, за счёт нарастания и слияния с другими. А, раз на каждую частицу, жёсткую молекулу, — приходится энергия 3kT, то, с уменьшением их числа, внутренняя энергия U твёрдого тела и теплоёмкость C=dU/dT — падают. Наконец, при абсолютном нуле, когда всякое движение замирает, остаётся одна гигантская жёсткая молекула, включающая весь кристалл и имеющая энергию 3kT. Поэтому, внутренняя энергия тела U уже не 3kTNa, а 3kT (Na=6·1023 — число атомов тела молярного объёма). Поскольку k=1,38·10-23 Дж/К, то эта энергия U=3kT ничтожно мала. Оттого и получаем C=dU/dT=3k≈0, вместо обычной теплоёмкости C=3kNa=3R, поскольку k/R=1/Na<<1. Это классически объясняет спад теплоёмкости до нуля, при низких температурах вещества (Рис. 173.б). Хотя, логичней было бы говорить об изменении самого вещества, у которого с учётом укрупнения молекул пересчёт молярной теплоёмкости дал бы прежнее значение C=3R.

Стоит отметить, что такое объединение атомов внутри кристалла — в гигантские жёсткие конгломераты, кластеры, аналогичные жёстким молекулам, имеет очень важное значение для эффекта Мёссбауэра (§ 3.7), в котором тепловое движение атомов, обладающих даже в твёрдом теле огромными скоростями, нарушало бы стабильность частоты гамма-излучения, за счёт эффекта Доплера. Но были обнаружены кристаллы, в которых при охлаждении атомы жёстко соединялись, порой образуя единый комплекс, включающий в себя весь кристалл [74]. Весь такой комплекс обладает кинетической энергией MV2/2 порядка 3kT, а, потому, если учесть его гигантскую массу M, скорость V его, при той же температуре T, окажется много меньше тепловой скорости одиночных атомов, колеблющихся в узлах решётки обычных, нежёстких кристаллов и твёрдых тел (§ 3.7). Это практически исключало доплеровский сдвиг от движений атомов и давало совпадение частоты излучения и поглощения в эффекте Мёссбауэра, то есть, — эффект обращения спектра. Причём, как подтвердили эксперименты [135], это совпадение тем лучше, чем выше твёрдость, жёсткость кристалла и его характерная температура перехода в сверхсвязанное состояние (называемая температурой Дебая, см. ниже).

Таким образом, кристаллы, оказывается, тоже характеризуются разной степенью упорядоченности: есть абсолютно жёсткие кристаллы, в которых атомы, словно детальки конструктора, прочно связаны своими формами. К ним относятся наиболее твёрдые и плотные тела, типа алмаза, сапфира, как отмечал ещё Лукреций (§ 4.14). А есть полужёсткие, в которых атомы, хоть и расположены упорядоченно, но оказываются одиночными, связанными нежёстко, подвижно, то разрывая, то образуя связи, а, потому, и двигаясь много быстрей, с большей амплитудой колебаний, как догадался тот же Лукреций, изложивший идеи Демокрита о молекулярной природе теплоты и броуновского движения пылинок (§ 4.16). Такие полужёсткие кристаллы напоминают уже не крепко связанные детали конструктора, а, скорее, — кубик Рубика, который легко деформируется от смещения формирующих его кубиков-атомов. Или же этот кристалл подобен собранному паззлу, который, будучи поднят за край со стола, легко гнётся, поскольку детали в нём, не имея достаточно жёстких связей, вихляются. Существование кристаллических тел с жёстко и нежёстко связанными частицами подтверждается, как раз, поведением их теплоёмкости при изменении температуры. Так, у свинца, образованного слабо связанными атомами и, потому, легко режущегося даже ножом, теплоёмкость остаётся на уровне 3R — даже при опускании температуры до 50 K, подтверждая тем самым, что его атомы не образуют жёстко связанных комплексов. Зато, у алмаза и бериллия (материалов известных своей твёрдостью и прочностью, за счёт жёсткой связи атомов, образующих монолитный кристалл) уже при комнатных температурах теплоёмкость гораздо ниже 3R [45, Т. 1, с. 596]. И, лишь при нагреве до 1000 К их теплоёмкость начинает приближаться к уровню 3R, за счёт теплового разрушения жёстких связей в крупных атомных комплексах.

Эту характерную температуру, ниже которой твёрдые тела "перестают подчиняться классическим законам" и становятся заметны отклонения от C=3R из закона Дюлонга-Пти, называют "температурой Дебая" ΘD=E/k, которую вводят через минимально допустимую по квантовым законам температуру и энергию E колебаний атомов в кристалле. На деле же, как видели, эту температуру легко определить классическим образом, как температуру, при которой средняя кинетическая энергия атомов ~kT становится сопоставима с удельной энергией ES полностью насыщенной связи атомов. То есть, характерная температура TS=ES/k. Отсюда, в отличие от формулы Дебая, сразу видно, что прочные, твёрдые тела, с очень большой энергией связи ES (бор, алмаз, кремний), обладают высокой характерной температурой TS, тогда как мягкий свинец и щелочные металлы — очень низкой. Зато при охлаждении того же свинца ниже этой температуры, его атомы сцепляются так прочно, что по твёрдости, упругости он сравнивается с лучшей рессорной сталью [90]. По той же причине, температура TS (классический аналог температуры ΘD Дебая) связана со скоростью звука, коэффициентами упругости и проводимости металлов (§ 4.17). Все эти характеристики напрямую зависят от жёсткости, твёрдости металла, — от энергии связи в нём атомов, электронов, от степени насыщения этой связи.

Сказанное в общих чертах верно и для теплоёмкости жидкостей, молекулярные связи в которых возникают и рвутся беспорядочно (§ 4.14). Но и здесь молекулы при соединении могут образовывать сравнительно жёсткие кластеры, "мерцающие", "пульсирующие" микрокристаллы, обнаруженные с помощью рентгенографии, например, — в воде [138]. С повышением температуры процент таких кристаллов уменьшается от разрыва жёстких связей, отчего, по примеру твёрдых тел, теплоёмкость почти всех жидкостей растёт при нагревании, за счёт роста числа независимых частиц и приходящихся на их долю степеней свободы.

Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Сергей Семиков - Баллистическая теория Ритца и картина мироздания, относящееся к жанру Техническая литература. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)