`
Читать книги » Книги » Научные и научно-популярные книги » Техническая литература » Сергей Семиков - Баллистическая теория Ритца и картина мироздания

Сергей Семиков - Баллистическая теория Ритца и картина мироздания

Перейти на страницу:

Обычно атомы, ядра и элементарные частицы изображают шариками (что порой делалось для удобства и в данной книге), а, потому, мысль об их чёткой периодичной структуре, о кубической, пирамидальной форме частиц, с их рёбрами и гранями, кажется диковатой. Но, с другой стороны, атомы и частицы издавна называют элементарными кирпичиками, из которых построена материя. Так что же удивительного, если эти кирпичики имеют форму многогранников, как обычные строительные кирпичи, игрушечные кубики или детали конструктора? И что странного, если и сами эти кирпичи построены из ещё меньших кирпичиков, расположенных правильными, периодичными рядами? Не зря, Кеплер и Ломоносов, которые первыми научно обосновали атомарную и кристаллическую структуру вещества, считали атомы многогранниками, пирамидками [63]. А нынешние учёные, даже применив электронный микроскоп, ещё не получили чётких изображений атомов и лишь гадают об их форме.

Итак, классическая модель атома, мало того, что помогает наглядно и естественно объяснить механизм химической связи, но и позволяет установить глубокую аналогию химических и ядерных процессов, энергий и связей. Интересно, что эта геометро-механическая модель связи, впервые предложенная ещё Демокритом, возрождённая Ломоносовым, развитая Льюисом и Ленгмюром, но потом — надолго забытая, ныне вновь обрела признание, скажем в органической химии, в иммунологии, молекулярной генетике и в теории обонятельных рецепторов, где присоединение атомов и молекул часто происходит по принципу соответствия их геометрической формы, — по механизму ключ-замок. Не исключено, что такое представление о структуре материи, частицы которой связаны за счёт механического переплетения с образованием слоистых периодичных, шахматных структур (§ 3.12), формирующих затем объёмные тела и полые многогранники, отражены и в материальной культуре наших предков, для которых плетение, особенно венков и кос, имело глубокий символический смысл. Не случайно быт славян был основан на переплетении волокон льна, шерсти, волос, соломы, лыка, бересты, ивовых прутьев и даже брёвен, как видно на примере тканой одежды, лаптей, корзин, плетёных коробов, котомок, а также изб, теремов и других шедевров народного зодчества, возведённых без единого гвоздя. Если же наши предки-умельцы и применяли металл, то его они тоже переплетали наподобие волокон, когда соединяли вместе звенья цепей или кольца кольчуг (наиболее распространённых как раз на Руси), образующих такие же узоры, как цепочки и сетки связанных электронов и позитронов (Рис. 95, Рис. 102). Такой механизм формирования мира, путём плетения или связывания нитей материи и поля (истекающего из частиц, словно пряжа), отражён и в "Велесовой книге", составленной древнеславянскими учёными-волхвами. Аналогичные воззрения о том, что наш мир соткан из периодично расположенных зарядов противоположного знака, находим и в древнеиндийских "Станцах Дзиан": "И ткань эта есть Вселенная, сотканная из Двух Сущностей, воедино слитых".

§ 4.15 Вымерзание степеней свободы

Очевидно, теплота состоит во внутреннем движении материи… Внутреннее движение можно себе представить происходящим трояким образом: 1) неощутимые частицы непрерывно изменяют место, или 2) вращаются, оставаясь на месте, или, наконец, 3) непрерывно колеблются взад и вперёд… Первое мы назовём поступательным, второе вращательным, третье колебательным внутренним движением… При более быстром вращении частиц связанной материи должна увеличиваться теплота, а при более медленном — уменьшаться. Частицы горячих тел должны вращаться быстрее, более холодных — медленнее… Должна существовать наибольшая и последняя степень холода, которая должна состоять в полном прекращении вращательного движения частиц.

М.В. Ломоносов, "Размышления о причине теплоты и холода", 1750 г.

Ещё одним "подтверждением" квантовой теории в молекулярной физике считают явление вымерзания степеней свободы [19]. Известно, что двухатомная молекула, скажем, молекула водорода H2, обладает пятью степенями свободы. Три из них связаны с поступательным движением молекул вдоль трёх осей, и две — с вращением вокруг двух осей (Рис. 172). На каждую степень свободы частицы приходится энергия kT/2, и двухатомная молекула обладает в среднем энергией 5kT/2, где k — постоянная Больцмана, T — температура в кельвинах. Одноатомная же молекула наделена лишь энергией поступательного движения 3kT/2. У двухатомных молекул реально есть ещё и энергия упругих колебаний атомов внутри молекулы. Поэтому, энергия реальных двухатомных молекул 7kT/2.

Рис. 172. Энергии и степени свободы двухатомной молекулы (а) и атома в кристалле (б) связаны с поступательным движением, вращением и колебаниями.

В итоге, молярная теплоёмкость C (прирост внутренней энергии тела фиксированного объёма из Na=6·1023 молекул при нагреве на 1 ºС) для газа из реальных двухатомных молекул — 7R/2; из жёстких двухатомных — 5R/2; из одноатомных — 3R/2 (здесь R=kNa — газовая постоянная). И, точно, при высоких температурах теплоёмкость водорода C=7R/2, однако при охлаждении C падает до 5R/2 (Рис. 173.а). А, с приближением к абсолютному нулю, C стремится к 3R/2, словно у молекул газа при охлаждении "вымерзают" (сковываются) степени свободы. Двухатомные молекулы сначала становятся жёсткими, а, при дальнейшем охлаждении, прекращают вращение, словно одноатомные.

Рис. 173. Изменение с температурой теплоёмкости а) двухатомного газа (водорода), б) твёрдого тела (медь).

Такое уменьшение теплоёмкости двухатомных газов, при понижении температуры, считалось противоречащим классической молекулярно-кинетической теории и нашло объяснение в квантовой теории, предложенной В. Нернстом, который и открыл феномен. Долгое время казалось, что классическая физика не совместима с этим феноменом. И, всё же, ему можно найти простое истолкование в традициях классики, стоит лишь принять модель атома Ритца. Тогда, при высоких температурах, атомы в полужёстких молекулах действительно колеблются, и C=7R/2. При снижении температуры, энергии атомов уже не хватает для разрыва части связей и колебаний, — молекула становится "жёсткой". Например, атом водорода устроен таким образом, что в первом электронном слое (Рис. 104, Рис. 105), где всего два места, электрон занимает лишь одно (Рис. 170). Поэтому, электрон второго атома водорода попадает в вакантное место, образуя химическую связь. А пустующее место в слое второго атома — заполняется электроном первого. Так возникает молекула водорода H: H, где атомы H связаны ковалентной связью — из пары электронов, обозначенных по Ленгмюру точками (Рис. 174). При высоких температурах T, у большинства молекул водорода одна связь порвана, и молекула H·H получается полужёсткой: её атомы могут вращаться, колебаться вокруг единственной точки связи, в виде электрона. При спаде температуры, энергии не хватает для разрыва связей, атомы полностью стыкуются, образуя двойную связь и жёсткую молекулу H: H, атомы которой уже не способны колебаться. Оттого и C=5R/2 при такой не слишком высокой температуре.

Рис. 174. При высоких T атомы водорода разделены (а). При снижении T один электрон обобщается, образуя полужёсткую молекулу H·H (б). При низких температурах в жёсткой молекуле H: H обобщены оба электрона (в).

В водороде одновременно присутствуют полужёсткие молекулы с одной связью H·H и жёсткие, с атомами, скованными воедино двойной связью H: H. С понижением температуры, теплоёмкость плавно убывает от C=7R/2 до C=5R/2, поскольку плавно меняется соотношение числа молекул H·H и H: H (Рис. 173.а). Как выяснили, охлаждение ведёт к снижению процента полужёстких молекул H·H, отчего плавно спадает и теплоёмкость. В то же время, теоретически, газы из этих двух типов молекул можно разделить, ведь, за счёт разного строения, они должны различаться физико-химическими свойствами и спектрами (§ 3.4). И такое разделение водорода на два компонента с разными свойствами и спектрами, действительно, осуществлено в лабораториях [19, 134]. Из водорода удалось выделить два газа — ортоводород и параводород, обладающие разными свойствами и теплоёмкостями. Поскольку, при низких температурах водород почти полностью состоит из более устойчивого параводорода, то он, очевидно, образован частицами с парой связей H: H. Соответственно, ортоводород, возникающий при сильном нагреве, состоит из частиц H·H, где одна из связей порвана.

Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Сергей Семиков - Баллистическая теория Ритца и картина мироздания, относящееся к жанру Техническая литература. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)