`
Читать книги » Книги » Научные и научно-популярные книги » Науки: разное » Наука, философия и религия в раннем пифагореизме - Леонид Яковлевич Жмудь

Наука, философия и религия в раннем пифагореизме - Леонид Яковлевич Жмудь

1 ... 49 50 51 52 53 ... 129 ВПЕРЕД
Перейти на страницу:
ряд других теорем, а старые были частично переработаны Евклидом либо кем-то незадолго до него. Незначительной переработке подверглось и несколько теорем IV книги, но в целом обе эти книги, бесспорно, восходят к пифагорейцам.[626]

Все 14 теорем II книги Евклида посвящены приложению площадей, которое, как мы помним, Евдем приписывал «пифагорейской Музе».[627] В этой теории квадрирование прямоугольной фигуры решается нахождением среднего пропорционального χ между двумя отрезками а и b, — квадрат со стороной а: и будет равен прямоугольнику ab. Гиппократ не только отлично знал этот метод, но и развил его, сведя задачу об удвоении куба к нахождению двух средних пропорциональных между двумя заданными отрезками. Здесь важно отметить, что Гиппократу не просто были известны предложения, которые мы возводим к пифагорейцам, — в конце концов, он мог доказать их и сам. Но дело в том, что Гиппократ ставил перед собой уже гораздо более сложные задачи и опирался на достижения пифагорейцев в решении своих собственных проблем, таких как квадратура луночек или удвоение куба.

Итак, можно заключить, что в области планиметрии к середине V в. пифагорейцам было известно содержание II и IV книг, большинство положений III книги и значительная часть I книги. I книга стоит здесь несколько особняком: это связано с тем, что во второй половине IV в. она была сильно переработана и к ней были добавлены многие новые предложения, касающиеся параллелограммов.[628] Помимо этого, создание Евдоксом новой теории пропорций, изложенной в V книге Евклида, вызвало необходимость редакции всех тех положений первых четырех книг, которые опирались на старую теорию пропорций,135 например теоремы Пифагора.

В области стереометрии к пифагорейцам можно отнести построение трех правильных многогранников (XIII книга Евклида) — куба, пирамиды и додекаэдра. Не исключена, правда, и вероятность того, что они больше занимались математическими соотношениями, присущими этим многогранникам, чем их точным математическим построением.[629] Сомнения высказывались в особенности по поводу додекаэдра, ибо построение октаэдра, представляющего собой соединение двух пирамид с квадратным основанием, гораздо проще; тем не менее октаэдр приписывают Теэтету, а додекаэдр — Гиппасу.[630] Разделение теории правильных многогранников на два этапа (исследование отдельных многогранников и их общая теория) помогает уяснить, почему более сложный многогранник был построен раньше, чем более простой и тривиальный.[631] Гиппас занимался не теорией правильных многогранников как таковой, а именно додекаэдром. Теэтет же, поставив вопрос о том, какие правильные многогранники вообще могут существовать, легко открыл октаэдр.

Еще Хит полагал, что основа всех трех арифметических книг Евклида (VII-IX) восходит к пифагорейцам,[632] имея в виду, разумеется, и Феодора, и Архита. Однако раннепифагорейская арифметика отражена в собрании Евклида лишь в очень небольшом объеме, остальной материал дошел до нас через посредство неопифагорейцев. Тем не менее подавляющее большинство историков греческой математики от Таннери и Хита до ван дер Вардена и Кнорра относит значительную часть этого материала к концу VI-середине V в. Буркерт противопоставил этому консенсусу совершенно иной взгляд: до Архита пифагорейская арифметика состояла из заимствованных у вавилонян формул, числовой мистики и туманных спекуляций о четном и нечетном.[633] Несмотря на высокий филологический уровень его анализа, показавшего немало слабых мест в прежних реконструкциях, позиция Буркерта не получила серьезной поддержки среди историков математики, ибо против нее говорит слишком много фактов.

Если в геометрии пифагорейцы отнюдь не были монополистами, то в арифметике все известные нам математики вплоть до Фимарида, жившего уже в середине IV в.,[634] либо прямо связаны с пифагорейской школой, либо были учениками пифагорейцев, как Теэтет и Евдокс. Едва ли случайно сам Архит считал, что арифметика (или теория чисел — λογιστική) превосходит геометрию, поскольку дает доказательства там, где геометрия бессильна (47 В 4).[635] Очевидно, что это суждение относится к предшествующей ему математике, причем математике по преимуществу пифагорейской, в которой арифметическая компонента присутствует с самого начала.[636] Высокий уровень арифметических доказательств самого Архита подразумевает наличие уже сложившейся и дедуктивно развитой дисциплины. Недаром многие склонны полагать, что до Архита существовал арифметический компендий, аналогичный «Началам» Гиппократа в геометрии.[637]

Не вдаваясь в детали уже существующих реконструкций пифагорейской арифметики,[638] отметим их наиболее существенные результаты. Как показал Беккер, часть IX книги, т. е. предложения 21-34 и те определения VII книги, на которые они опираются, восходят к самому раннему этапу пифагорейской арифметики.[639] Это учение о четных и нечетных числах вполне может принадлежать Пифагору, равно как и метод построения фигурных чисел.[640] Ван дер Варден относит VIII книгу к Архиту или его школе, VII книгу — к пифагорейцам до Архита.[641] В качестве возможного автора VII книги следует назвать Феодора. Так же, как его ровесник Гиппократ свел воедино в своих «Началах» те вещи, которые он считал необходимыми для дальнейшего развития геометрии, Феодор мог обработать и систематизировать известный ему арифметический материал.

Разумеется, далеко не все, что было известно ко времени Евклида, попало в арифметические книги «Начал». Значительная часть этого материала казалась малопригодной для той систематической теории чисел, которую представляет собой Евклидова арифметика. Через посредство спевсипповского трактата «О пифагорейских числах» и эллинистических компендиев материал этот оказался доступным неопифагорейским авторам и нашел в них горячих почитателей. Некоторые вещи всплывают еще позже, как например, метод нахождения соотношений стороны и диаметра квадрата (так называемых πλευρικοί και διαμετρικοί αριθμοί), который трактует Прокл в комментарии к «Государству».[642] Этот алгоритм сводится к теореме о том, что квадрат иррационального диаметра отличается на единицу от квадрата соответствующего рационального диаметра.[643] В отличие от данного арифметического метода соответствующая геометрическая теорема попала в собрание Евклида (11,10), причем ее терминология, равно как и само нахождение во II книге указывают на пифагорейское происхождение.[644]

Несмотря на весьма активное в последние десятилетия исследование раннегреческой геометрии, здесь по-прежнему остается немало проблем. С одной стороны, ясно, что далеко не все положения, вошедшие в первые четыре книги Евклида, появились в период между Гиппасом и Гиппократом. Часть из них была доказана еще Фалесом и Пифагором, а возможно, и какими-то другими математиками VI в., не относившимися к пифагорейской школе.[645] С другой стороны, маловероятно, чтобы Гиппасу принадлежали только те открытия, о которых сообщает традиция, — математик такого уровня должен был сделать гораздо больше. Впрочем, тот же вопрос правомерен и в отношении других математиков V в. — как пифагорейцев, так и непифагорейцев. Анаксагор и Энопид были на несколько десятилетий старше Гиппократа,

1 ... 49 50 51 52 53 ... 129 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Наука, философия и религия в раннем пифагореизме - Леонид Яковлевич Жмудь, относящееся к жанру Науки: разное. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)