`
Читать книги » Книги » Научные и научно-популярные книги » Науки: разное » Наука, философия и религия в раннем пифагореизме - Леонид Яковлевич Жмудь

Наука, философия и религия в раннем пифагореизме - Леонид Яковлевич Жмудь

1 ... 48 49 50 51 52 ... 129 ВПЕРЕД
Перейти на страницу:
немногих представителей ранней школы, которому псевдопифагорейская традиция не приписывала никаких сочинений, кроме некоего Μυστικός λόγος, направленного против Пифагора (D.L. VIII,7).

Зарождению легенд о выдаче им секретов и изгнании из общества (гибели в море) способствовало, вероятно, то обстоятельство, что термин αρρετος значил одновременно «иррациональный, не выразимый в числах» и «священный, тайный».[610] Такое объяснение содержится в источнике, который использовал Папп,[611] и оно кажется вполне разумным.[612] В его авторе резонней видеть Евдема, чем кого-либо из поздних авторов, для которых легенды давно уже стали частью пифагорейской истории. Во всяком случае, употребление термина αρρετος по отношению к иррациональным величинам относится к первой половине V в.; у Феодора появляется термин ασύμμετρος, а начиная с Теэтета постоянным terminus technicus становится άλογος.[613] Этот факт также может указывать на раннее происхождение легенды о разглашении секрета иррациональности.[614]

Поскольку традиция связывает с Феодором доказательства иррациональности величин, лежащих между √3 и √17 открытие Гиппаса традиционно относят лишь к √2. Классическое доказательство иррациональности √2, т. е. несоизмеримости диагонали квадрата с его стороной, дается в приложении к X книге Евклида. Оно опирается на учение о четном и нечетном и ведется методом reductio ad absurdum.[615] Обе эти детали указывают на его пифагорейское происхождение, но данное доказательство слишком сложное, чтобы быть первоначальным.[616] Фон Фриц, например, считал, что Гиппас открыл иррациональность, исследуя свойства правильного пятиугольника, диагональ которого также несоизмерима с его стороной. Попытки найти для них общую меру ведут к построению все новых пятиугольников, что наглядно демонстрирует бесконечность самой процедуры.[617] Однако доевклидова традиция связывает открытие иррациональности со стороной квадрата, а не пятиугольника (Pl. Tht. 147d; Parm. 140b-c; Arist. Met. 1053 а 14 f). Поэтому более предпочтительными кажутся реконструкции, основанные на отношении диагонали и стороны квадрата.[618] Одна из них, предложенная Кнорром,[619] выглядит следующим образом.

Дан квадрат ABCD. Из чертежа видно, что квадрат DBHI является его удвоением. Если сторона DB и диагональ ВН соизмеримы, то можно сосчитать, какое количество раз каждая из них измеряется их общей мерой. При этом из чисел DB и DH по крайней мере одно не должно быть четным.

Квадраты DBHI и AGFE представляют собой квадратные числа. AGFE — это удвоенный DBHI, как ясно из чертежа. Следовательно, AGFE — это четное квадратное число, и его сторона AG, равная DH, должна быть четной. Значит, AGFI делится на 4. Поскольку ABCD — это 1/4 AGFE, он представляет собой четное число. Квадратное число DBHI должно быть его удвоением. Отсюда DBHI и его сторона DB — четные числа. Таким образом, вопреки предположению, мы приходим к тому, что числа DB и DB четные. Следовательно, эти две линии несоизмеримы.

Какую бы, впрочем, реконструкцию первоначального доказательства иррациональности √2 мы ни приняли, остается ясным, что это открытие имело кардинальную важность в становлении греческой математики. Проблемы, которые оно породило, дали импульс исследованиям Гиппократа, Феодора, Теэтета и нашли свое завершение в созданной Евдоксом теории пропорций, действительной как для соизмеримых, так и для несоизмеримых величин. Значение открытия иррациональности многие были даже склонны переоценивать, полагая, что оно привело к так называемому кризису оснований в греческой математике — по аналогии с тем, что произошло в математике на рубеже XIX-XX вв.[620] Однако эта точка зрения давно уже оставлена, ибо свидетельства такого кризиса отсутствуют.[621] Столь же мало подтверждения находит и идея о том, что открытие Гиппаса нанесло «смертельный удар» по пифагорейской догме «всё есть число». К этому вопросу мы еще вернемся при обсуждении пифагорейской философии.

Важность открытия иррациональности является одной из причин, по которой многие историки математики стремятся отнести его к как можно более позднему времени, к концу V в. или даже к началу IV в. Между тем все необходимые математические предпосылки этого открытия (теорема Пифагора, теория четных и нечетных чисел, метод reduciio ad absurdum) имелись уже на рубеже VI-V вв. Нас не должно смущать то обстоятельство, что между Гиппасом и Феодором, продолжившим его исследования, прошло два поколения. Такой же или даже еще больший временной разрыв мы наблюдаем и во многих других случаях. Первые три пропорции открыл Пифагор, следующие три были найдены Евдоксом (Eud. fr. 133), родившимся на 180 лет позже. Так же обстоит дело и с двумя способами нахождения пифагоровых троек: первый из них был найден Пифагором, второй — Архитом.

* * *

Представление о том, чего достигли пифагорейцы в математике к началу деятельности Гиппократа Хиосского (ок. 440), можно получить, сопоставляя свидетельства Евдема с тем, что вытекает из фрагментов самого Гиппократа. При этом следует помнить, что Евдем называет еще двух геометров, работавших в первой половине V в.: Анаксагора и Энопида Хиосского (fr. 133). К сожалению, о математике Анаксагора мы совсем ничего не знаем, с Энопидом же традиция связывает два сравнительно элементарных предложения (Eucl. 1,12, 23), которые, однако, весьма важны для астрономии.[622]

Из сообщений, прямо или опосредованно восходящих к Евдему, известно, что пифагорейцам принадлежали следующие геометрические открытия:

1) теорема о равенстве углов треугольника двум прямым (fr. 136), содержащаяся у Евклида (1,32);

2) теория приложения площадей, рассматриваемая в I и II книгах Евклида (fr. 137);

3) теорема о том, что плоскость вокруг точки могут заполнить только следующие правильные многоугольники: шесть треугольников, четыре квадрата и три шестиугольника (Procl. In Eucl., p. 304);

4) IV книга Евклида, рассматривающая отношения правильных многоугольников и круга (Schol. in Eucl. IV,2);

5) построение трех правильных многогранников — куба, пирамиды и додекаэдра (Schol. in Eucl. XIII,1).

Теоремы, уже известные Гиппократу, подтверждают сообщения Евдема и одновременно расширяют наши представления об уровне пифагорейской математики. Гиппократ хорошо знал значительную часть теорем I книги Евклида, в частности предложения 1-12, 22-23, 29, 32, 47-48.[623] Ему была известна также обобщенная теорема Пифагора для остроугольных и тупоугольных треугольников (II, 12-13) и теорема о правильном шестиугольнике, вписанном в круг (IV,15). Вместе с тем правильный пятиугольник, вписанный в круг, был известен уже Гиппасу. Мы еще раз убеждаемся в том, что вся

IV книга Евклида была известна пифагорейцам, за исключением, может быть, последнего предложения о правильном пятнадцати-угольнике (IV,16).[624]

Поскольку IV книга опирается на положения III книги, часть из которых была известна уже Фалесу, а некоторые другие использовал Гиппократ при квадрировании луночек, следует заключить, что к пифагорейцам восходит и большая часть III книги.[625] Правда, позже к этой книге был добавлен

1 ... 48 49 50 51 52 ... 129 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Наука, философия и религия в раннем пифагореизме - Леонид Яковлевич Жмудь, относящееся к жанру Науки: разное. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)