Наука, философия и религия в раннем пифагореизме - Леонид Яковлевич Жмудь
Итак, мы видим, что греки отнюдь не утруждали себя поисками материала для доказательств, более того — они начали с доказательства таких вещей, которые до них никому и в голову не приходило доказывать.[523] Ведь египетские геометры тоже знали на практике тот факт, что диаметр делит круг пополам, но они не испытывали ни малейшей потребности в его строгом доказательстве. «Действительно оригинальной и революционизирующей идеей греческой геометрии было стремление найти доказательство 'очевидных' математических фактов».[524] В этом, собственно, и заключался переход от практической и вычислительной математики к теоретической науке.
Четыре теоремы Фалеса, связанные с углами и треугольниками, никак не могут соотноситься с египетской математикой еще и потому, что египтяне никогда не занимались сравнением углов по величине и подобием треугольников. Ни в египетской, ни в вавилонской математике вообще не было понятия угла как измеряемой величины.[525] По определению Гэндза, геометрия египтян была «линейной», в отличие от «угловой» геометрии греков, в которой углы впервые стали объектом измерения.[526] Гэндз полагал, что заслуга введения «угловой» геометрии принадлежит Фалесу и его школе и справедливо видел в этом начало математической теории.
Помимо крайней ненадежности сведений о путешествии Пифагора в Египет характер его математических занятий также не дает оснований видеть в них результат заимствования. Пожалуй, единственное, что могло хотя бы в какой-то степени соотноситься с египетской математикой, — это теорема Пифагора. Во всяком случае, неоднократно высказывалось предположение, что египтянам была известна если не сама теорема, то, по крайней мере, тот факт, что треугольник со сторонами 3, 4, 5 — прямоугольный. Свойства этого треугольника были известны не только в Вавилоне, но и в Индии, и в Китае, т. е. везде, где существовала сколько-нибудь развитая математическая культура. Но как раз в египетской математике ничто не указывает на знакомство с этим или каким-либо иным частным случаем теоремы Пифагора.[527]
По поводу сообщения Демокрита можно предположить, что во время поездки в Египет он в самом деле пытался доказывать гарпе-донаптам какие-то теоремы, действуя через местных переводчиков, знавших греческий. Означает ли это, что и они, в свою очередь, доказывали ему теоремы? Сам термин гарпедонапты (землемеры) указывает на сугубо практический характер занятий, для которых доказательство теорем было вещью явно бесполезной.[528] Едва ли можно сомневаться в том, что эта попытка установления прямых «научных контактов» окончилась безрезультатно для той и другой стороны.
Если в подтверждение тезиса о египетском влиянии можно привести как данные античной традиции, так и факты реальных контактов, пусть даже и крайне незначительные, то в случае с Вавилоном мы не располагаем даже этим. В греческой литературе VI-IV вв. нет ни одного упоминания о вавилонской математике, трудно даже сказать, знали ли о ней вообще. Из области элементарной математики и техники вычислений того времени невозможно привести ни одного надежного факта вавилонского влияния.[529] Наконец, никто из авторов этой эпохи не упоминает о поездке Фалеса или Пифагора в Вавилон.[530] Чтобы в такой ситуации говорить о «восточной первооснове» греческой математики, нужно располагать вескими доводами, в то время как сам Нейгебауер признает, что его точка зрения — лишь гипотеза, не подтвержденная никакими документальными свидетельствами.[531] Справедливость этой оценки хорошо видна на примере «геометрической алгебры».
Исследуя II книгу Евклида, трактующую так называемое приложение площадей,[532] математики еще в XVIII в. обнаружили, что ее предложения могут быть переформулированы алгебраически, в виде тождеств и квадратных уравнений. Например, предложение 11,2 можно рассматривать как тождество (а + b)с = ас + bc, а приложение площади с недостатком означает построение на данном отрезке а такого прямоугольника ах, что при отнятии от него квадрата х2 получается данный квадрат b2 (в алгебраической интерпретации ах - x2 = b2). Со времени Цейтена теоремы II книги и сходные с ними предложения VI книги принято называть «геометрической алгеброй» и видеть в ней геометрическую переформулировку алгебраических проблем.[533]
Содержание теории приложения площадей действительно совпадает с основными типами квадратных уравнений, которые вавилоняне умели решать еще во II тыс. до н.э. Однако математическая близость обоих методов может быть объяснена как генетическим родством, так и типологическим сходством. Какой путь предпочтительнее? В первом случае необходимо доказать, что: 1) теоремы II книги были переведены с алгебраического языка на геометрический, а не что их можно переформулировать; 2) Пифагор или какой-то другой математик VI-V вв. действительно побывал в Вавилоне и обучился местной математике; 3) в то время реально имелась возможность перевода вавилонских методов на язык геометрии.
Доказательство каждого из этих пунктов наталкивается на очень серьезные трудности. Все больше историков математики склоняется к тому, что приложение площадей вовсе не было переформулировкой алгебраических методов, а возникло на греческой почве в ходе решения чисто геометрических проблем.[534] Вавилонские решения сложны, требуют специального интереса и специальной же подготовки и потому едва ли могли проникнуть в Грецию, передаваясь из рук в руки (как это было, вероятно, с данными, позволившими Фалесу «предсказать» дату солнечного затмения). О греческом математике, устроившемся в обучение к вавилонскому «коллеге», говорить всерьез не приходится. Помимо всего прочего, у нас нет данных о том, чтобы подобный тип математики практиковался в Вавилоне в VI в.: все наличные тексты относятся к старовавилонскому периоду.[535] Наконец, можно ли предположить, что за две с лишним тысячи лет до того, как Декарт создал аналитическую геометрию, нашелся человек, сумевший перевести вавилонские задачи на язык геометрических теорем?[536]
В самой гипотезе о заимствовании численных решений квадратных уравнений едва ли есть какая-то необходимость: в древнекитайской математике, например, имеются задачи, очень похожие на теоремы II книги Евклида, но возникли они, по всей видимости, без всякого внешнего влияния.[537] То же самое справедливо и в отношении метода расчета «пифагоровых троек» — численного значения сторон в прямоугольном треугольнике, в котором также видят результат вавилонского влияния. Между тем найденный Пифагором метод органически связан с его исследованиями
Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Наука, философия и религия в раннем пифагореизме - Леонид Яковлевич Жмудь, относящееся к жанру Науки: разное. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

