`
Читать книги » Книги » Научные и научно-популярные книги » Науки: разное » Наука, философия и религия в раннем пифагореизме - Леонид Яковлевич Жмудь

Наука, философия и религия в раннем пифагореизме - Леонид Яковлевич Жмудь

1 ... 38 39 40 41 42 ... 129 ВПЕРЕД
Перейти на страницу:
чрезмерных увлечений Востоком, прозвучавшая со стороны такого авторитета, как Целлер,[506] привели к гораздо более сдержанной оценке успехов египтян и степени их влияния на греков. Как удачно сформулировал Лурье: «Все исследователи сходились в главном: 1) что самый факт влияний на раннюю греческую геометрию надо признать несомненным; 2) что существенного значения это не имело, так как если греки и позаимствовали некоторые числовые данные у египтян, то логически отчетливая последовательная система доказательств — самостоятельная заслуга греческого гения».[507]

Новое звучание эта проблема приобретает в 30-х гг. нашего века в связи с дешифровкой математических текстов вавилонян. Уровень вавилонской математики оказался гораздо более высоким, чем египетской, а ряд ее проблем носил сходство с математикой греков. Это склонило многих ученых к убеждению, что истоки греческой науки следует искать именно здесь.[508] В особенности это касается так называемой «геометрической алгебры», изложенной во II книге Евклида, в которой видят геометрическую переформулировку вавилонских методов решения квадратных уравнений в численном виде.

Возвращаясь к античным свидетельствам, отметим, что один из главных уроков, которые преподали нам египтология и ассириология, состоит в следующем: утверждениям греков о восточной математике и астрономии можно доверять лишь в том случае, если они подтверждаются данными самих восточных текстов. Из последних же вытекает, что тезис о прямой преемственности греческой математики от восточной должен быть окончательно оставлен. Спорить можно лишь о степени использования некоторых данных, тем или иным путем пришедших с Востока, и об их роли в становлении раннегреческой науки. Отдельные данные в ней действительно использовались, но масштабы этих заимствований никак не следует преувеличивать, а их влияние на развитие собственно математических изысканий вообще едва различимо.

Геродот и Евдем, указывая на практический характер египетской геометрии, безусловно были более близки к истине, чем Аристотель. Вопреки его мнению, геометрия формировалась здесь отнюдь не в среде жрецов и никогда не была их прерогативой.[509] К тому же Аристотель не прав и по существу: после более чем столетнего изучения египетской математики нет оснований предполагать наличие в ней чего-либо похожего на теорию или доказательство. Греки не могли заимствовать в Египте научные идеи, которых там не было, и их высокая оценка египетской геометрии говорит лишь о том, что они были знакомы с ней лишь понаслышке.[510] Почти все достоверные сведения о египетских заимствованиях относятся к практической математике, причем к арифметике, а не к геометрии.[511] Очевидно, что эти арифметические приемы, как правило, весьма примитивные, заимствовали и применяли отнюдь не ученые люди, а купцы или мореплаватели, которых связывали с Востоком куда более тесные связи, чем греческих математиков. Хотя и примеров подобных заимствований весьма мало, эта сторона культурных контактов представляется более плодотворной почвой для их поиска, чем путешествия на Восток ученых. Лаже в тех случаях, когда о них достоверно известно, возможность прямых «научных контактов» кажется весьма маловероятой.

Языковой барьер был здесь едва ли не самым главным препятствием: чтобы разобраться в вавилонской или египетской математике, нужно было изучать чужой язык и сложнейшую письменность. На Востоке писцов, занимавшихся вычислениями, обучали долгие годы — мог ли грек освоить их за время краткой поездки?

Об упорном нежелании греков учить чужие языки и вникать в суть чужих теорий хорошо известно.[512] Оно ярко проявилось и в эпоху эллинизма, когда контакты греков с Востоком стали гораздо интенсивней, чем раньше: всякому, кто хотел быть доступным, греческой публике, приходилось писать на ее родном язке. Чужой язык мог выучить человек, которому он был необходим для профессиональной деятельности: врач или наемник, служивший при дворе восточного царя, купец, часто бывавший в восточных странах, или греческий колонист, живший в Египте.[513] Но даже в более позднее время нам не известен ни один греческий авор, который бы знал египетский язык и письменность, — даже среди тех, кто действительно побывал в этой стране и оставил о ней сочинения.[514] При всем желании нельзя обнаружить ничего египетского в тринадцати книгах Евклида, а ведь он прожил в Александрии большую часть жизни. То же самое справедливо и в отношении других математиков III в. — Архимеда, Эратосфена, Аполлония из Перги, каждый из которых в принципе мог ознакомиться с математикой Востока.

Нет никаких сведений и о том, чтобы кто-нибудь из греческих ученых знал аккадский язык. Р. Шмит, проанализировав все упоминания об ' Ασσύρια / Περσικά / Χαλδαικά γράμματα, приходит к выводу, что, хотя греки и знали о существовании клинописи, никакого различия между ее видами (вавилонским, древнеперсидским, арамейским) они не делали, воспринимая клинопись просто как некое «восточное письмо».[515] Отчетливые следы заимствования вавилонских астрономических данных и вычислительных приемов видны лишь с середины II в.,[516] уже после того, как появились труды некоторых вавилонских астрономов, написанные по-гречески. Фигура же греческого ученого, изучавшего в VI-V вв. египетскую иеро-глифику или аккадскую клинопись в надежде проникнуть в тайны чужих знаний, остается лишь плодом научного воображения и не имеет отношения к реальным контактам между Востоком и Западом в ту эпоху.

Факт путешествия в Египет Фалеса оспорить трудно,[517] но из того, что известно о математике Фалеса, никак не вытекает вывод о его заимствованиях в этой области. О двух теоремах, которыми занимался Фалес, сообщает Евдем (fr. 134, 135), две другие упоминает Прокл (In Eucl., p. 157, 250), черпавший свои сведения из того же Евдема, хотя, вероятно, и опосредованным способом.[518] Еще одну называет писательница I в. Памфила (D.L. 1,24). Сведения эти неоднократно отвергались как недостоверные,[519] но этому противоречит детальность и, точность информации Евдема, который явно опирался на надежную традицию.[520] Можно полагать, что он узнал о теоремах Фалеса из каких-то ранних доксографических сочинений, скорее всего, из книги софиста Гиппия Элидского, на которого он сам ссылался (fr. 133).[521] О наличии этой традиции до Евдема говорят и стихи Аристофана, который не стал бы называть Фалеса великим геометром (Nub. 180; Αν. 1009), если бы среди афинян V в. эта репутация не была прочно утвердившейся.

Согласно Евдему, Фалес доказывал, что диаметр делит круг пополам, а угол, опирающийся на диаметр, — прямой; утверждал, что углы при основании равнобедренного треугольника равны; открыл равенство накрест лежащих углов и, наконец, доказал теорему о равенстве треугольников по двум углам и стороне. Что же из этого можно соотнести с египетской математикой? Ровным счетом ничего. Нужно ли было Фалесу ездить в Египет, чтобы убедиться, что диаметр делит

1 ... 38 39 40 41 42 ... 129 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Наука, философия и религия в раннем пифагореизме - Леонид Яковлевич Жмудь, относящееся к жанру Науки: разное. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)