Цифры врут. Как не дать статистике обмануть себя - Том Чиверс
Предположим, что при тестировании средний балл у людей, прочитавших книгу, действительно оказался выше. Если p-значение такого результата меньше 0,05, будем считать, что мы достигли статистической значимости, отвергнем нулевую гипотезу (что книга не приносит пользы) и примем альтернативную (книга помогает лучше понимать статистику). Величина p-значения здесь показывает нам, что будь нулевая гипотеза верна и проведи мы тестирование сто раз, наши читатели показали бы не меньшее преимущество перед второй группой менее чем в пяти случаях.
* * *
Статистическая значимость сбивает с толку даже ученых. Исследование 2002 года показывает, что 100 % студентов-психологов и, хуже того, 90 % их преподавателей неправильно трактуют этот термин. В другом исследовании выяснилось, что в 25 из 28 рассмотренных учебников по психологии есть хотя бы одна ошибка в данном определении.
Давайте же разберемся с некоторыми возможными заблуждениями. Во-первых, важно помнить, что статистическая значимость – понятие условное. Нет ничего магического в числе 0,05. Вы можете взять за основу другое: меньшее, тем самым объявляя недостоверными большее число результатов (отнеся их к категории случайных), или большее, расширяя границы статистически значимых данных. Чем выше планка, тем выше риск ложноположительных результатов, чем ниже – тем выше риск ложноотрицательных. Ужесточив критерий, мы можем подумать, что чтение книги никак не сказывается, хотя на самом деле это не так. Ну и, конечно, наоборот.
Во-вторых, статистически значимый результат не обязательно значим в обыденном смысле. Например, если в группе тех, кто книгу не читал, средний балл – 65, а в другой – 68, то результат вполне может считаться статистически значимым, но для вас он вряд ли важен. Статистическая значимость какого-то результата характеризует вероятность его случайного получения, а не его важность.
И в-третьих: p = 0,05 для вашего результата не гарантирует, что вероятность ложности вашей гипотезы составляет всего одну двадцатую. Это самое распространенное заблуждение, и оно лежит в основе многих научных ошибок.
Проблема же в том, что хотя выбор в качестве границы статистической значимости числа 0,05 совершенно условен, ученые и – что еще важнее – редакции научных журналов принимают ее за точку отсечения. Если для ваших результатов p = 0,049, у вас есть шансы их опубликовать, а если p = 0,051, то такие шансы ничтожны. А ученым нужны публикации их исследований, чтобы получить грант, найти постоянную должность и вообще рассчитывать на карьерный рост. Поэтому они крайне заинтересованы в получении статистически значимых результатов.
Вернемся же к нашему эксперименту. Мы хотим показать, что эта книга помогает лучше разбираться в статистике и достойна попасть в список бестселлеров Sunday Times; и после этого, надеемся, будем получать приглашения на престижные коктейльные вечеринки. Но мы получаем лишь p = 0,08.
Наверное, просто не повезло, думаем мы. И повторяем эксперимент – достигаем 0,11. И еще, и еще, и еще раз, пока наконец не выходит 0,04. Потрясающе! Мы докладываем о результатах и дальше припеваючи живем на роялти с продажи книги. Только это почти наверняка ложноположительный результат. Если провести эксперимент 20 раз, вполне можно ожидать один случайный результат.
Есть и другие способы достичь желаемого. Мы можем по-разному тасовать данные. Например, не только считать баллы, но и измерять, насколько быстро люди проходят тест, или оценивать красоту почерка. Пусть читатели книги не получают более высокие баллы, но вдруг они быстрее справляются с тестом? Или у них улучшился почерк? А можно отбросить самые крайние результаты, назвав их выбросами. Если ввести достаточно параметров и по-разному сочетать их или внести в данные необходимые и кажущиеся разумными поправки, то по чистой случайности рано или поздно наверняка найдется что-то подходящее.
Теперь вернемся к мужчинам, пытающимся покорить женщин хорошим аппетитом. В конце 2016 года Вансинк, ведущий автор того исследования, опубликовал в своем блоге пост – «Аспирантка, которая никогда не говорила „нет“». Это положило конец его карьере.
Вансинк написал о новой турецкой аспирантке, пришедшей в его лабораторию. Он дал ей данные провалившегося эксперимента, который проводился без внешнего финансирования и имел нулевые результаты. (Это был месячный эксперимент, в ходе которого одним людям продавали входные билеты в итальянский ресторан со шведским столом по цене в два раза выше, чем другим.) Вансинк предложил ей проанализировать данные, потому что, по его мнению, из них можно было что-нибудь извлечь.
По его рекомендации аспирантка сделала это десятками различных способов и – вас это не должно удивить – нашла кучу корреляций. В нашем воображаемом эксперименте с чтением книги мы бы точно так же могли перебирать данные на разные лады, пока бы не обнаружили что-нибудь со значением p < 0,05. На основании полученного набора данных аспирантка с Вансинком опубликовали пять статей, включая ту самую. В ней утверждалось, что в присутствии женщин мужчины едят больше пиццы (p < 0,02) и салата (p < 0,04).
Пост в блоге насторожил ученых. Описанная в нем практика называется p-подгонкой (p-hacking) – это перетряхивание данных в поисках утверждений, позволяющих преодолеть барьер в p = 0,05 и опубликовать статью. Методологически подкованные исследователи стали пересматривать все старые статьи Вансинка, а научная журналистка из BuzzFeed News Стефани Ли получила от своего источника электронную переписку ученого с сотрудниками и опубликовала ее. Оказалось, что он рекомендовал аспирантке разбивать данные на «мужчин, женщин, обедающих, ужинающих, питающихся в одиночку, по двое, в группах более двух человек, заказывающих алкогольные или безалкогольные напитки, садящихся рядом со шведским столом или далеко от него и т. п.».
В старых публикациях Вансинка обнаружились и другие проблемы методологического характера, а его имейлы указывали на порочную статистическую практику. Например, он писал: «Мы должны получить из этого намного больше… Думаю, стоит перебрать данные в поисках значимых и увлекательных утверждений». Он хотел, чтобы их исследование «стало вирусным».
Этот случай по-настоящему драматичен. Но вообще p-подгонка – в менее драматичных формах – происходит постоянно. Обычно она вполне невинна. Ученым нужно добиться p < 0,05 для публикаций, поэтому они повторяют исследования или заново анализируют результаты старых. Возможно, вы слышали о «кризисе воспроизводимости»: многие важные открытия в психологии и иных науках оказались неверными, когда другие ученые попытались повторить эксперименты первооткрывателей. Он произошел именно потому, что ученые не осознавали этой проблемы: они пересортировывали свои данные и повторяли эксперименты до тех пор, пока не получали статистически значимые результаты, не понимая, что таким образом работа становится бессмысленной. Мы еще вернемся к этому вопросу в главе 15, «В погоне за новизной».
Для того чтобы вскрыть ситуацию с Вансинком, потребовались месяцы кропотливой работы добросовестных статистически подкованных исследователей и опытного научного журналиста. По большей части научные журналисты пишут новости на базе пресс-релизов. Они вряд ли могут выявить p-подгонку, даже имея на руках наборы данных, которых у них обычно нет.
Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Цифры врут. Как не дать статистике обмануть себя - Том Чиверс, относящееся к жанру Математика / Обществознание / Публицистика. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.


