`
Читать книги » Книги » Научные и научно-популярные книги » Математика » Цифры врут. Как не дать статистике обмануть себя - Том Чиверс

Цифры врут. Как не дать статистике обмануть себя - Том Чиверс

1 ... 6 7 8 9 10 ... 38 ВПЕРЕД
Перейти на страницу:
(фрейминга) проявляет себя при опросах. На односложные вопросы (типа: должно ли государство оплачивать лечение?) чаще отвечают «да».

Ну и как? Правда ли, что британцы больше всего любят перекусывать тостами с сыром? Не исключено, что raisin.co.uk серьезно озаботилась репрезентативностью выборки и даже ввела веса для учета возрастных, гендерных и электоральных особенностей населения, но так ли это, мы просто не знаем. (Мы спрашивали! И если нам ответят, мы учтем это при переиздании, честное слово.)

Но тратить столько сил на чисто развлекательный опрос было бы довольно странно – мы бы удивились, если б они это сделали. Скорее всего, они просто разместили в сети анкету и получили ответы преимущественно от тех, кто участвует в интернет-опросах.

Вопрос в том, совпадают ли вкусы отвечавших и населения в целом. Могут и совпадать. Но этого мы не знаем. Знаем только, что из двух тысяч опрошенных ими людей 22 % выбрали тосты с сыром. Ну да, факт интересный сам по себе – из него следуют некоторые выводы в отношении этих двух тысяч. Но скорее всего, это мало что говорит обо всех британцах.

Глава 5

Статистическая значимость

Верно ли, что мужчины больше едят в присутствии женщин, чтобы произвести на них впечатление? Так утверждалось в новости, вышедшей в 2015 году в The Daily Telegraph. Об этом же исследовании писали и в Reuters, и в The Economic Times в Индии.

В тех публикациях говорилось, что в присутствии женщин мужчины едят на 93 % больше пиццы и на 86 % больше салата, чем в присутствии других мужчин. Они опирались на исследования Брайана Вансинка, психолога из лаборатории пищевых продуктов и торговых марок Корнеллского университета, и двух его соавторов.

Вы уже могли догадаться, в историях, о которых мы рассказываем в этой книге, не все числа надежны. Однако в данном случае это не вина журналистов. Здесь само исследование оказалось совершенно неправильным, и этот случай очень показателен: на его примере видно, как работает и не работает наука. Чтобы разобраться, почему приведенной статистике нельзя доверять, нам придется углубиться в механизмы научной деятельности. Если вы в них разберетесь, то многое из того, о чем мы расскажем в последующих главах, будет гораздо прощепо– нять.

Почти в любой публикации о науке и числах встречается термин «статистическая значимость». Вам простительно думать, что речь идет о важности чисел, о которых вы читаете. К сожалению, все намного сложнее. Вот что это значит, согласно публикации 2019 года:

В предположении, что верна нулевая гипотеза и что исследование повторяется бесконечное число раз с помощью случайных выборок из той же самой совокупности людей, менее 5 % этих результатов будут более экстремальны, чем текущий результат.

Стало понятнее? Давайте разбираться.

Предположим, мы хотим что-то выяснить. Например, помогает ли чтение книг с названием «Цифры врут» лучше понимать статистику, которая приводится в новостях. Возьмем солидную выборку из тысячи человек: в нее войдут некоторые из тех миллионов людей, кто прочитал эту книгу, а также несколько людей, которые – увы! – этого не сделали. (Для простоты будем считать, что до того, как кто-то ознакомился с нашим трудом, группы были совершенно одинаковыми; хотя понятно, что на самом деле покупатели этой книги в среднем намного талантливее, умнее и красивее, чем остальное население.)

Потом проведем среди этих людей несложный тест, чтобы проверить их знания статистики и узнать, лучше ли результаты у тех, кто прочитал книгу.

Предположим, что да, лучше. А как узнать, не простая ли это случайность? Наши читатели действительно лучше справляются с тестом или это случайная вариация? Для ответа на этот вопрос мы воспользуемся специальной методикой – проверкой достоверности (или проверкой гипотезы).

Так, предположим, что «Цифры врут» никак не влияют на читателей, и представим результаты. Это называется нулевой гипотезой. При другом варианте – альтернативной гипотезе – книга произвела некий положительный эффект.

Это хорошо иллюстрируется графиком. Если верна нулевая гипотеза, то пик кривой будет возле среднего значения – большинство людей окажется в середине, оттеснив на края тех немногих, кто выполнит тест очень хорошо или очень плохо. Сама кривая будет похожа на кривую нормального распределения из главы 3. При этом среднее значение и график кривой окажутся похожими у обеих групп (тех, кто прочитал книгу, и тех, кто этого не сделал).

Если же верна альтернативная гипотеза, то средний балл читателей будет выше среднего балла другой группы и кривая распределения для этой группы сместится вправо.

Но даже если верна нулевая гипотеза и книга не оказывает никакого эффекта; если – внезапно – окажется, что обе группы одинаково хорошо разбираются в статистике, все равно останется одна проблема – вам не избежать случайных вариаций. У кого-то будет просто неудачный день. Вспомните фильм «Осторожно! Двери закрываются» – Гвинет Пэлтроу в одной вселенной пропускает свой поезд, опаздывает на наш тест, расстраивается и сдает его плохо; а в другой – приходит вовремя, блестяще отвечает на вопросы и влюбляется в Джона Ханну. Пунктуальность и душевное равновесие, вероятно, не сделают из девушки эксперта по статистике, однако благоприятно отразятся на результатах теста. Есть некоторая (пусть и небольшая) доля случайности в том, насколько хорошо каждый участник выполнит задания.[12]

Если несколько не читавших книгу выполнят тест очень плохо, а несколько прочитавших – очень хорошо, это может заметно изменить среднее значение – покажется, что читатели в общем проходят тест намного лучше.

Итак, представим, что по какой-то причине ваши результаты говорят, что читатели лучше справляются с тестом. Теперь важно узнать, насколько вероятно получить такие (или еще более экстремальные) результаты, если верна ваша нулевая гипотеза – чтение книги не влияет, а все вариации случайны. Это и называется проверкой достоверности.

Нет конкретного значения, при котором абсолютно ясно, что нулевая гипотеза неверна: теоретически даже самые сильные различия могут оказаться случайными. Но чем больше разница, тем меньше шансов, что это случайно. Ученые измеряют шансы случайного совпадения с помощью вероятности, или p-значения.

Чем менее правдоподобна случайность какого-нибудь события, тем меньше p. Если есть только один шанс из ста, что получится не менее экстремальный результат, если чтение книги не оказывает никакого эффекта, то p = 0,01. (Однако это не значит – и это ИСКЛЮЧИТЕЛЬНО ВАЖНО, настолько, что мы дважды напишем «ИСКЛЮЧИТЕЛЬНО ВАЖНО» прописными буквами, что вероятность того, что данный результат неверен, составляет одну сотую. Мы позже вернемся к этому, а пока просто отметим как факт.)

Во многих науках принято считать, что если p меньше или равно 0,05 – иными словами вы ожидаете увидеть столь экстремальные результаты

1 ... 6 7 8 9 10 ... 38 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Цифры врут. Как не дать статистике обмануть себя - Том Чиверс, относящееся к жанру Математика / Обществознание  / Публицистика. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)