`
Читать книги » Книги » Научные и научно-популярные книги » Математика » Алиса в стране Смекалки - Смаллиан Рэймонд М.

Алиса в стране Смекалки - Смаллиан Рэймонд М.

1 ... 17 18 19 20 21 ... 40 ВПЕРЕД
Перейти на страницу:

– Как интересно! – воскликнула Алиса.

– Кстати сказать, – заметил Шалтай-Болтай, – если мы примем дополнительно два допущения о том, что Эпименид – единственный критянин и что высказанное им утверждение – единственное утверждение, когда-либо сделанное им за всю жизнь, то действительно получим парадокс! Он будет в точности таким же, как то утверждение, которое я написал на листке из твоей записной книжки. Помнишь, в нем говорилось о том, что оно ложно?

– Поразмысли над этим, – посоветовал Шалтай-Болтай, – а я хочу предложить тебе провести еще один опыт. Не дашь ли ты мне еще раз свою записную книжку?

Алиса с готовностью протянула ему карандаш и записную книжку. Шалтай-Болтай что-то написал в ней и, вернув записную книжку, сказал:

– Взгляни на страницу 11. Истинно написанное там утверждение или ложно?

Алиса открыла записную книжку на странице 11 и прочитала:

– 11 —

Утверждение на странице 11 истинно

Алиса немного подумала и ответила:

– Я ничего не могу сказать. Мне кажется, что оно может быть и истинным, и ложным. Если оно истинно, то никакого противоречия не возникает. Если же оно ложно, то никакого противоречия также не возникает.

– На этот раз ты абсолютно права! – согласился Шалтай-Болтай.

– Да ты, я вижу, хамелеонная девочка!

– Что вы имеете в виду? – удивилась Алиса.

– А то, что ты говоришь то неправильно, то правильно, совсем как хамелеон, который меняет свою окраску: то он одного цвета, то другого.

Такое употребление слова «хамелеонный» показалось Алисе весьма странным. Впрочем, у Шалтая-Болтая (как она вспомнила) слова означали только то, что он хотел, не больше и не меньше.

– Я хотел бы провести еще один опыт, – сказал Шалтай-Болтай. – Дай-ка мне еще раз твою записную книжку.

Взяв у Алисы ее записную книжку, Шалтай-Болтай стер номера 10-й и 11-й страниц и вместо 10 написал 11, а там, где стоял номер 11, написал 10, после чего странички стали выглядеть так:

– 10 — 11 — Утверждение на странице 10 ложно Утверждение на странице 11 истинно

– Как, по-твоему, – спросил Шалтай-Болтай, – ложно или истинно утверждение на странице 11?

Алиса задумалась, как вдруг ей в голову пришло решение.

– Утверждение на странице 11 не может быть ни ложным, ни истинным, – сказала она. – Это еще один парадокс!

– Правильно! – сказал Шалтай-Болтай. – Но как это доказать?

– Очень просто, – сказала Алиса. – В утверждении на странице 11 в действительности говорится только не прямо, а косвенно, что оно ложно: в нем говорится, что истинно утверждение на странице 10, в котором говорится, что утверждение на странице 11 ложно. Следовательно, если утверждение на странице 11 истинно, то оно должно быть ложно, а если оно ложно, то должно быть истинно, и мы снова получаем парадокс.

– Ты растешь прямо на глазах! – воскликнул Шалтай-Болтай, очень довольный своей ученицей.

– Вы знаете, есть один парадокс, который мне так и не удалось решить, сколько я ни старалась, – сказала Алиса. – Может быть, вы сможете мне чем-нибудь помочь?

– Буду очень рад, – ответил Шалтай-Болтай, которому очень польстила просьба Алисы. – Я перерешал все задачи, которые когда-либо были изобретены, и еще больше задач, которые никогда не были изобретены. Так в чем твоя задача?

– В ней говорится о брадобрее, – сказала Алиса. – В одном небольшом городе жил брадобрей, который брил всех жителей города, которые не брились сами. Брился ли сам брадобрей или не брился?

– Это очень старая и очень легкая задача! – засмеялся Шалтай-Балтай.

– Но я не вижу ни одного приемлемого решения! – сказала Алиса. – Я думала над этой задачей довольно долго, но ничего путного так и не придумала. Если брадобрей бреется сам, то он нарушает свое правило, по которому он бреет только тех жителей, которые сами не бреются. Если же брадобрей сам не бреется, то он принадлежит к числу тех жителей города, которые сами не бреются, а так как таких жителей он бреет, то должен брить и самого себя. Таким образом, бреется брадобрей сам не бреется, мы приходим к противоречию! Разрешить его, сказав: «Утверждение о том, что брадобрей бреется сам, не истинно и не ложно», – мы не можем, так как он либо бреется сам, либо не бреется, поэтому утверждение должно быть либо истинным, либо ложным.

– Кто бреется сам? – спросил Шалтай-Болтай.

– Как это кто? Брадобрей!

– Какой брадобрей? – допытывался Шалтай-Болтай.

– Брадобрей из истории о брадобрее! – ответила Алиса чуточку нетерпеливо.

– Ах вот кто! – протянул Шалтай-Болтай. – А кто сказал, что эта история правдива?

Алиса немного подумала.

– Послушайте, – сказала она. – Дано, что брадобрей ведет себя так, как об этом говорится в истории. Когда вы решаете задачу, разве можно отрицать то, что дано в ее условиях?

– А разве нельзя? – удивился Шалтай-Болтай. – Даже если то, что дано, внутренне противоречиво?

Такая идея не приходила Алисе в голову.

– В действительности, – продолжал Шалтай-Болтай, – такого брадобрея нет, не было и не будет. Такого брадобрея просто не могло быть потому, что, если бы он был, возникло бы противоречие.

Алисе объяснение Шалтая-Болтая показалось не очень убедительным.

– Подумай сама, – настаивал Шалтай-Болтай не без раздражения. – Предположим, я скажу тебе, что был на свете человек ростом шесть футов, а человек не был ростом шесть футов. Что ты на это скажешь?

– Скажу, что такого человека не было, – ответила Алиса.

– Хорошо! А предположим, я скажу тебе, что был на свете брадобрей, который сам ни брился, ни не брился. Что ты на это скажешь?

– Скажу, что такого брадобрея на свете не было, – ответила Алиса.

– Прекрасно! Именно о таком брадобрее и идет речь в твоей истории! Ведь твой брадобрей не мог бы ни бриться сам, ни не бриться сам! Следовательно, такого брадобрея на свете не было. Вот тебе логика!

На этот раз объяснения Шалтая-Болтая полностью убедили Алису.

– Существует близкая задача, которая позволяет яснее представить себе всю проблему, – продолжал Шалтай-Болтай. – В некотором городе живут два брадобрея. Назовем их брадобрей А и брадобрей В. Дано, что брадобрей А бреет всех жителей города, которые не бреются сами, но не дано, что он не бреет еще каких-нибудь жителей города. Относительно брадобрея В известно, что он не бреет ни одного жителя города, который бреется сам, но не обязательно бреет всех жителей города, которые не бреются сами. В этом случае вполне возможно, что брадобреи А и В существуют. Такое предположение ничему не противоречит.

– А в чем задача? – спросила Алиса.

– Задача состоит из двух частей. Бреет ли себя или не бреет брадобрей А? И бреет ли себя или не бреет брадобрей В?

Алиса немного подумала.

– Брадобрей А бреется сам, а брадобрей В сам не бреется, – ответила она, необычайно гордая своей сообразительностью.

– Хорошо! Очень хорошо! – похвалил ее Шалтай-Болтай. – А не можешь ли ты объяснить мне, почему?

– Потому, – начала весьма уверенно Алиса, – что если бы брадобрей А не брился сам, то он был бы одним из тех, кто не бреется сам, а поскольку всех таких жителей города он бреет, то должен был бы брить и самого себя, и мы приходим к противоречию. Следовательно, брадобрей А не бреется сам. Относительно брадобрея В можно сказать, что если бы он брился сам, то брил бы жителя города, который бреется сам, чего он никогда не делает. Значит, брадобрей В не может брить самого себя.

1 ... 17 18 19 20 21 ... 40 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Алиса в стране Смекалки - Смаллиан Рэймонд М., относящееся к жанру Математика. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)