`
Читать книги » Книги » Научные и научно-популярные книги » География » Коллектив авторов - Строение и история развития литосферы

Коллектив авторов - Строение и история развития литосферы

Перейти на страницу:

Заметим, что граница Мохо в Амеразийском бассейне не является изотермической, т. е. температура на ней зависит от мощности коры. Этот же результат был получен ранее практически для всех пассивных переходных зон Мирового океана, в отличие от активных конвергентных зон Западной Пацифики (Смирнов, Сугробов, 1980), где был сделан вывод об изотермической природе границы Мохо.

Рис. 13. Сейсмический (v, км/с) и геотермический (изолинии – Т,°С) разрезы вдоль профилей «СЛО-92» (А) и «Арктика-2000» (В). Крапом показана область фракционного плавления в мантии.

Рис. 14. Распределение температур (Т,°С) (А) и теплового потока (мВт/м2) (Б) вдоль профиля «СЛО-8991».

В верхней мантии, в пределах твердой литосферы температура нарастает от 700–750°С до 1200°С на глубине 42–45 км. Кровля термической астеносферы, приуроченная к изотерме 1250°С с учетом РТ-условий для данной глубины, проявляется на глубине 50 км.

Таким образом, мы прогнозируем мощность литосферы под Котловинами Подводников равную 50 км. Это несколько меньшая мощность, чем у литосферы абиссальных котловин Мирового океана (70–80 км), но типичная для пассивных континентальных окраин атлантического типа. Именно такие оценки мощности литосферы были получены в Ангольской, Бразильской и Канарской континентальных окраинах при исследованиях теплового поля на трансатлантических геотраверсах (Подгорных, 1986). Полученные данные позволяют констатировать отсутствие новейшей тектономагматической активности в районе Котловин Подводников.

Анализ фонового теплового потока показал, что внутри литосферы Котловин Подводников он составляет 60–70 мВт/м2. Имеется тенденция некоторого увеличения фонового теплового потока вкрест простирания Котловины. Так, под Хребтом Менделеева он достигает 80 мВт/м2. Однако это вполне объяснимо влиянием структурно-теплофизических неоднородностей из-за пониженной теплопроводности неконсолидированных осадков Котловин по сравнению с обнажающимся складчатым комплексом Хребта Менделеева, обладающим более высокой теплопроводностью.

Котловины Подводников, исходя из имеющихся данных о строении земной коры, а также на основании моделирования толщины литосферы, можно рассматривать как структуры пассивной континентальной окраины Атлантического типа.

Анализ термического режима литосферы этих структур не позволяет говорить о проявлениях новейшей тектонической активности. По-видимому, Котловины Подводников сформированы на месте континентального блока, существовавшего в геологическом прошлом, при прогибании верхней части литосферы. Аналогичные по строению котловины авторы исследовали в Юкатанском бассейне Карибского моря (Кононов и др., 1990)

4. 3D-модели температурного поля в Западно-Арктическом бассейне

По своей тектонической структуре Западно-Арктический регион является типичной мозаичной областью, что не позволяет для него остановиться на методике двухмерного геотермического моделирования, которое по сравнению с трехмерной моделью с теми же геотермическими параметрами и геометрией дает априорную систематическую погрешность в 10–15 %. В связи с этим полученные результаты расчета глубинных температур не распространяются за пределы створа профиля. Для того, чтобы перейти к трехмерной модели, все профильные створы помещаются на единый трехмерный плот в координатах: «широта-долгота-глубина».

Точность расчетов оценивалась по двум критериям: во-первых, по совпадению модельного и измеренного в скважинах теплового потока; во-вторых, по совпадению температур на пересечении профилей. Метод наименьших квадратов, примененный для оценки погрешности глубины нахождения изотерм в створе пересечения профилей, показал, что она составляет 150 м, что при средней глубине расчета температур 30 км составляет относительную погрешность 0,5 %.

Особенностью трехмерного моделирования является установление температур, а следовательно, и всех остальных геотермических параметров в геометрии «широта-долгота-глубина» для всего региона. С помощью объемной интерполяции программы «TECPLOT» мы получили трехмерную картину распределения температур на всю глубину исследования (до 35 км) и для всего региона. Аналогичная процедура была применена и для рисовки трехмерной картины распределения теплового потока. Программа позволяет построить глубинные срезы температур и тепловых потоков на любой глубине, а также изотермические поверхности.

Проанализируем полученные результаты моделирования.

Наибольшие значения геотермических градиентов наблюдаются в юго-восточной и восточной частях Баренцева моря, прилегающих к Канину п-ову, о-ву Колгуев и арх. Новая Земля, а также в Южно-Карской впадине (см. рис. 2). Это естественно вызывает появление температурных аномалий на глубинных срезах. Величина аномалий температуры относительно фоновых значений изменяется от +20°С на глубине 3 км (при фоновых температурах 90–100°С) до +40°С на глубине 5 км (при фоновых температурах 125–140°С). Однако эти аномалии связаны не с высоким глубинным тепловым потоком в этом районе, а с относительно пониженной теплопроводностью разреза, т. к. в сторону континента увеличивается мощность сравнительно низкотеплопроводного гранитно-метаморфического слоя. Тем не менее, юго-восточная и восточная части Баренцева моря характеризуются подъемом изотермических поверхностей, в том числе и тех, которые контролируют температурный интервал катагенеза углеводородного вещества. С этим, по-видимому, связана приуроченность уже открытых нефтегазовых месторождений именно к «температурному куполу» на юго-востоке и востоке моря, что хорошо иллюстрируется на рис. 15 и рис. 16.

Рис. 15. 3D-модель геотемпературного поля Баренцево-Карского региона (изотермы, °С).

Рис. 16. Температурные карты срезы на глубине 3 (1), 4 (2) и 5 км (3) в Баренцевом море (точками показано расположение месторождений углеводородов)

Нами не исключается возможность нахождения месторождений в других частях Баренцева моря на большей глубине. Пользуясь теми же интерпретационными критериями о приуроченности месторождений к температурному интервалу катагенеза, можно предположить их нахождение на глубинах 6–8 км в юго-западной и западной частях моря и на глубинах 5,5–7,0 км – в северо-западной части (Хуторской, Подгорных, 2001).

По-видимому, сходная ситуация существует и в Карском море – термический купол Южно-Карской впадины пространственно совпадает с локализацией крупнейших месторождений углеводородов – Русановским и Ленинградским (Подгорных и др., 2001).

Анализируя трехмерную температурную модель, можно видеть подъем изотерм на всем интервале глубин (до 15 км) в Южно-Карской впадине, что свидетельствует о существовании аномалии теплового потока, протягивающейся вдоль меридиана 66°в.д., от центра Байдарацкой губы на север. Это согласуется с измерениями повышенного по сравнению с фоновым теплового потока в скважинах на Русановском и Ленинградском месторождениях (73 и 76 мВт/м2). По результатам моделирования температура на глубинных срезах 3, 4 и 5 км уменьшается от указанного меридиана в восточном направлении на относительную величину 10°С, и на меридиане 70°в.д., в районе Белоостровской впадины изотермы уже лежат горизонтально, что характеризует фоновый геотермический режим. Среднее значение теплового потока на Ямале составляет 53 мВт/м2, что заметно ниже теплового потока на акватории Южно-Карской впадины.

Подъем изотерм, формирующих «термический купол», выявлен и в Море Лаптевых. (рис. 17). Пространственно он приурочен к району акватории между о-вом Столбовой и устьем р. Яна. Применяя ту же аналогию, которая была показана для юго-восточной части Баренцева и южной части Карского морей, можно предположить, что южный сектор Моря Лаптевых является наиболее перспективным регионом для проведения геолого-разведочных работ на углеводородное сырье.

Рис. 17. 3D-модель температурного распределения в Евразийском секторе Арктики

Трехмерное геотермическое моделирование позволяет прогнозировать глубину поверхностей, ограничивающих интервал возможного нахождения углеводородных залежей, и этим оно отличается от двухмерного моделирования, которое не позволяет «заглянуть» за линию профиля. Особенно сильные различия в результатах оценки перспектив нефтегазоносности по геотермическим данным могут быть в случае изометричных, а не линейных структур. При изометричности, которая характерна для осадочных бассейнов Западно-Арктического региона, оценки глубин нахождения катагенетических температур по двухмерной модели дают значения относительного расхождения с оценками по трехмерной модели на 10–15 %. Этот факт не требует специальных доказательств, т. к. хорошо известен из классических работ по теории теплопроводности (Карслоу, Егер, 1964).

Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Коллектив авторов - Строение и история развития литосферы, относящееся к жанру География. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)