`
Читать книги » Книги » Научные и научно-популярные книги » География » Коллектив авторов - Строение и история развития литосферы

Коллектив авторов - Строение и история развития литосферы

Перейти на страницу:

Разрезы пересекают основные тектонические элементы Баренцевоморского сектора и в региональном плане характеризуют строение осадочного чехла. Максимальные мощности отложений фиксируются в Южно-Баренцевской впадине, где они предположительно составляют около 18 км (профили 1–1, 2–2, 3–3, 7–7), минимальные – в западных частях региона – в норвежском секторе (профили 1–1, 2–2). Профиль 4–4 в меридиональном направлении пересекает зону Центрально-Баренцевских поднятий, разделенных прогибами, открывающимися в сторону Южно-Баренцевской впадины.

Часть разреза, включающая меловые, юрские, верхне-, средне– и частично нижнетриасовые отложения оказалась редуцирована в норвежском секторе, в результате позднемелового(?) – эоценового аплифта. Наиболее полные разрезы мезозоя отмечаются в депоцентрах Баренцевоморского мегабассейна: в Южно– и Северо-Баренцевских впадинах. Здесь снизу вверх по данным МОВ-ОГТ предполагается развитие глубоководных отложений ордовика-силура, девона, карбона и нижней перми, которые выше по разрезу сменяются преимущественно терригенными отложениями верхней перми, триаса, юры, мела и неоген-кайнозоя.

По данным исследования скважин мезозойская часть разреза характеризуется сменой по разрезу трансгрессивных и регрессивных последовательностей отложений. Максимум трансгрессии приходится на позднеюрское время, когда в разрезе формировалась толща так называемых «черных глин» (Устинов, Покровская, 1994). Самая глубокая скважина в этой части региона (Арктическая-1) остановлена на глубине 4524 м в отложениях ладинского яруса среднего триаса.

В бортовых частях Южно-Баренцевской впадины (скважины Мурманской площади) происходит существенное уменьшение мощностей триасовых и более древних отложений и выпадение из разреза отложений верхнего мела. По данным МОВ-ОГТ здесь предполагается развитие карбонатных отложений нижней перми, карбона и верхнего девона (профиль 7–7), аналогичных разрезам севера Тимано-Печорской плиты. В Печорском море палеозойские отложения вскрыты поисковым и разведочным бурением. Непосредственно вблизи линии профиля 3–3 находятся скважины Северо-Гуляевского и Приразломного месторождений. Одна из скважин Приразломного месторождения прошла осадочный чехол до глубины 4500 м и на забое вскрыла отложения самых низов нижнего девона. Установлено, что палеозойские отложения Печорского моря, содержащие основной по продуктивности каменноугольно-нижнепермский нефтегазоносный комплекс, имеют большое сходство с разрезами сухопутной части провинции (Государственная…, 2003).

Профили 5–5 и 6–6 расположены в самой северной части Баренцевоморского мегабассейна и пересекают острова арх. Земля Франца-Иосифа и прилегающую акваторию. Разрезы построены по данным геологических съемок и опираются на результаты бурения трех глубоких скважин на архипелаге Земля Франца-Иосифа (Нагурская, Северная, Хейса), по данным которых наблюдаются резкие изменения мощностей отложений и отсутствие на большей части архипелага отложений моложе триасовых. Разрез триасовых отложений насыщен интрузивными образованиями, которые отчетливо фиксируются как в разрезах скважин, так и на профилях МОВ-ОГТ. Ниже триаса, в разрезе Нагурской скважины, установлены верхнекаменноугольные отложения, но в прогибах, там, где общие мощности увеличиваются до 6 км, предполагается развитие полных разрезов перми, карбона, девона и силура. В акваториальной части разрезов по данным МОВ-ОГТ предполагается также существование юрских и меловых отложений.

Западная часть геотраверса 1-1а проходит в субширотном направлении в центральной части Баренцева моря от Медвежинско-Надеждинской ступени до Штокмановско-Лунинского порога (рис. 5). Основными теплофизическими границами на этом профиле, так же как и на всех остальных, являются границы протерозойского фундамента и фанерозойского чехла, а также верхнепалеозойского карбонатного комплекса и мезозой-кайнозойских терригенных пород. Структурно-теплофизические неоднородности выражены на геотермическом разрезе искривлением изотерм и увеличением геотермического градиента в относительно низкотеплопроводных толщах. Например, градиент температуры в породах складчатого фундамента составляет на интервале глубин 5–10 км 12–14 мК/м, а в породах верхнепалеозойского чехла – 20–21 мК/м. При инвариантности теплового потока на нижней границе разреза контраст значений градиента компенсируется обратным соотношением теплопроводности. Так что величина теплового потока на этом профиле практически постоянна и составляет 68 мВт/м2.

Температурный интервал катагенеза (140–180°С) залегает на глубине 5,0–6,5 км – в восточной части профиля и на 6–8 км – в западной его части. Таким образом, геотермические данные подтверждают независимо высказанное предположение о более высоком углеводородном потенциале Южно-Баренцевской впадины по сравнению с Центральным поднятием (Грамберг, Супруненко, 2001).

Геотраверс 2–2 проходит севернее, параллельно профилю 1-1а от о-ва Короля Карла в Свальбардском архипелаге до Северного о-ва Новой Земли, пересекая Малыгинскую и Лунинскую седловины, Адмиралтейское поднятие и Прогиб Седова (рис. 6).

Рис. 6. Геолого-геотермический разрез по профилю 2–2 (условные обозначения см. рис. 5).

Наибольшие проявления рефракции глубинного потока тепла здесь выражены на западном борту Лунинской седловины и при сочленении Прогиба Седова с Новой Землей. Причины этого связаны не только со структурно-теплофизическими неоднородностями, но и с понижением теплового потока в районе Новой Земли. На Новой Земле тепловой поток резко снижается (до 40 мВт/м2), что так же, как и на Урале, можно объяснить экранированием глубинного теплового потока аллохтонной литосферной пластиной, надвинутой со стороны Уральского палеоокеана при его закрытии в позднем палеозое (Хуторской, 1996). «Охлаждение» земной коры в восточной части профиля обусловило погружение катагенетического температурного интервала от 5–7 км в Малыгинской и на западе Лунинской котловин до 8–10 км – в Прогибе Седова.

Профиль 3–3 пролегает через наиболее продуктивную в отношении открытых месторождений углеводородов часть Баренцевоморского бассейна – через Печорское море. Главными структурными элементами этого геотраверса являются Южно-Баренцевская синеклиза и Печоро-Баренцевская зона погребенных поднятий (рис. 7). Далее на юго-восток профиль переходит в Приновоземельскую зону, где резко сокращается мощность осадочного чехла.

Рис. 7. Геолого-геотермический разрез по профилю 3–3 (условные обозначения см. рис. 5).

Наибольшие значения геотермических градиентов наблюдаются в Южно-Баренцевской синеклизе (до 20–22 мК/м в интервале глубин 5–10 км) из-за большой мощности низкотеплопроводных осадков терригенного мезозой-кайнозойского комплекса. В связи с этим, здесь происходит быстрое нарастание температур в осадочном чехле. Так, верхняя граница катагенетического интервала – 140°С встречается уже на 4,5 км. Таким образом, судя по геотермическим данным, Южно-Баренцевская синеклиза – это наиболее перспективная структура для локализации углеводородных месторождений.

Профиль 4–4 имеет меридиональное простирание и тянется от Кольского п-ова до западной оконечности архипелага Земли Франца-Иосифа (рис. 8). Фундамент на этом профиле имеет сложное строение, сочетающее выступы и прогибы, что обусловлено его простиранием вкрест основным субширотным структурам Баренцевской плиты. Как видно из рис. 8, амплитуда колебаний мощности чехла достигает 10–11 км, поэтому значения геотермических градиентов в прогибах и на выступах заметно различаются. Геотермический градиент в зонах прогибов в интервале глубин 5–10 км составляет ~16 мК/м, а в зонах выступов – 12 мК/м; в интервале глубин 0–5 км, соответственно, 24 и 19 мК/м.

Рис. 8. Геолого-геотермический разрез по профилю 4–4 (условные обозначения см. рис. 5).

В скважинах, лежащих на линии профиля 4–4, а также на зондовых станциях измерены относительно высокие значения теплового потока. Например, на северном борту Кильдинского прогиба в двух скважинах зафиксированы значения 109 и 114 мВт/м2, а фоновый тепловой поток для центральной части Свальбардской плиты можно оценить как 76–79 мВт/м2. Причины повышения теплового потока обсуждались выше. Однако, в настоящее время трудно отдать предпочтение какой-либо одной модели: это может быть и увеличение активности астеносферы при приближении к Северо-Атлантическому центру спрединга, и проявления вторичного рифтогенеза, фазы которого фиксируются, начиная с позднего палеозоя.

Здесь кажется уместным перейти к описанию теплового поля геотраверса 7–7, т. к. он, как и предыдущий, меридиональный и трансбаренцевский. Он начинается у Кольского п-ова и протягивается до широты Земли Франца-Иосифа.

Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Коллектив авторов - Строение и история развития литосферы, относящееся к жанру География. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)