`
Читать книги » Книги » Научные и научно-популярные книги » Физика » Ричард Фейнман - 1. Современная наука о природе, законы механики

Ричард Фейнман - 1. Современная наука о природе, законы механики

1 ... 31 32 33 34 35 ... 60 ВПЕРЕД
Перейти на страницу:

В качестве примера давайте найдем скорость падающего шара через 5 сек после начала падения. Один способ — это по­смотреть по табл. 8.2, что происходило с шариком на пятой се­кунде. В течение этой секунды он прошел 45 м, так что, каза­лось бы, он падал со скоростью 45 м/сек. Однако это неверно, поскольку скорость его все время изменялась. Конечно, в сред­нем в течение этой секунды она составляла 45 м/сек, но в дейст­вительности шар ускорялся и в конце пятой секунды падал быстрее 45 м/сек. Наша задача состоит в том, чтобы опре­делить скорость точно. Сделаем это следующим образом. Нам известно, где шарик находился через 5 сек. За 5 сек он прошел расстояние 125 м. К моменту 5,1 сек общее расстояние, которое прошел шарик, составит, согласно уравнению (8.1), 130,05 м. Таким образом, за дополнительную десятую долю секунды он проходит 5,05 м. А поскольку 5,05м за 0,1 сек то же самое, что и 50,5 м/сек, то это и будет его скорость. Однако это все еще не совсем точно. Для нас совершенно неважно, будет ли это скорость в момент 5 сек, или в момент 5,1 сек, или где-то по­средине. Наша задача вычислить скорость точно через 5 сек, а этого мы пока не сделали. Придется улучшить точность и взять теперь на тысячную долю больше 5 сек, т. е. момент 5,001 сек, Полное расстояние, пройденное за это время, составляет

s=5·5,0012 = 5·25,010001=125,050005 м.

Следовательно, в последнюю тысячную долю секунды шарик проходит 0,050005 м, и если разделить это число на 0,001 сек, то получим скорость 50,005 м/сек. Это уже очень близко, но все же еще не точно. Однако теперь уже ясно, как поступить, чтобы найти скорость точно. Удобнее решать эту задачу в несколько более общем виде. Пусть требуется найти скорость в некоторый момент времени t0(например, 5 сек). Расстояние, которое прой­дено к моменту t0 (назовем его s0), будет 5t20(в нашем случае 125 м). Чтобы определить расстояние, мы задавали вопрос: где окажется тело спустя время t0+ (небольшой добавок), или t0+e? Новое положение тела будет 5(t0+e)2=5t20+10t0e+5e2. (Это расстояние больше того расстояния, которое шарик прошел за t0 сек, т. в. больше 5t20.)Назовем это расстояние s0+ (не­большой добавок), или s0+x. Если теперь вычесть из него рас­стояние, пройденное к моменту t0, то получим х — то дополни­тельное расстояние, которое шарик прошел за добавочное вре­мя e, т. е. x=10t0e+5e2. Так что в первом приближении ско­рость будет равна

v=x/e=10t0+5e. (8.4)

Теперь мы уже знаем, что нужно делать, чтобы получить ско­рость точно в момент t0: нужно брать отрезок e все меньше и меньше, т. е. устремлять его к нулю. Таким путем из уравне­ния (8.4) получим

v (в момент t0)=10t0,

В нашей задаче t0=5 сек, следовательно, скорость равна v=10·5=50 м/сек. Это и есть нужный ответ. Раньше, когда e бралось равным 0,1 и 0,001 сек, получалась несколько большая величина, чем 50 м/сек, но теперь мы видим, что в действитель­ности она в точности равна 50 м/сек.

§ 3. Скорость как производная

Процедура, которую мы только что выполнили, настолько часто встречается в математике, что для величин e и x: было придумано специальное обозначение: e обозначается как Dt, а х — как Ds. Величина Dt означает «небольшой добавок к t», причем подразумевается, что этот добавок можно делать мень­ше. Значок D ни в коем случае не означает умножение на какую-то величину, точно так же как sinq не означает s·i·n·q. Это просто некоторый добавок ко времени, причем значок D напоми­нает нам о его особом характере. Ну, а если D не множитель, то его нельзя сократить в отношении Ds/Dt. Это все равно, что в выражении sinq/sin2q сократить все буквы и получить 1/2. В этих новых обозначениях скорость равна пределу отношения Ds/Dt при Dt, стремящемся к нулю, т. е.

(8.5)

Это по существу формула (8.3), но теперь яснее видно, что здесь все изменяется, а, кроме того, она напоминает, какие именно ве­личины изменяются.

Существует еще один закон, который выполняется с хоро­шей точностью. Он гласит: изменение расстояния равно скоро­сти, умноженной на интервал времени, за которое это изменение произошло, т. е. Ds=vDt. Это правило строго справедливо толь­ко тогда, когда скорость не изменяется в течение интервала Dt, а это, вообще говоря, происходит, только когда Dt доста­точно мало. В таких случаях обычно пишут ds=vdt, где под dt подразумевают интервал времени Dt при условии, что он сколь угодно мал. Если интервал Dt достаточно велик, то скорость за это время может измениться и выражение Ds = vDt будет уже приближенным. Однако если мы пишем dt, то при этом подра­зумевается, что интервал времени неограниченно мал и в этом смысле выражение ds=vdt точное. В новых обозначениях вы­ражение (8.5) имеет вид

Величина ds/dt называется «производной s no (такое название напоминает о том, что изменяется), а сложный про­цесс нахождения производной называется, кроме того, диффе­ренцированием. Если же ds и dt появляются отдельно, а не в виде отношения ds/dt, то они носят названия дифференциалов. Чтобы получше познакомить вас с новой терминологией, скажу еще, что в предыдущем параграфе мы нашли производную от функции 5t2, или просто производную от 5t2. Она оказалась равной 10t. Когда вы больше привыкнете к новым словам, вам станет более понятна сама мысль. Для тренировки давайте най­дем производную более сложной функции. Рассмотрим выра­жение s=At3+Bt+C, которое может описывать движение точ­ки. Буквы А, В, С, так же как и в обычном квадратном уравне­нии, обозначают постоянные числа. Нам нужно найти скорость движения, описываемого этой формулой в любой момент времени t. Рассмотрим для этого момент t+Dt, причем к s прибавится некоторая добавка Ds, и найдем, как выражается Ds через Dt. Поскольку

s+Ds=A(t+Dt)2+В (t+Dt) =At3+Bt+С+ЗAt2Dt+ВDt+3At (Dt)2+A(Dt)3

а

s=At3+Bt+C,

то Ds=3At2Dt+BDt+3At(Dt)2+A(Dt)3.

Но нам нужна не сама величина Ds, а отношение Ds/Dt. После деления на Dt получим выражение

Ds/Dt= 3Ats+3At(Dt)+A(Dt)3, которое после устремления Dt к нулю превратится в

Ds/Dt=3'At2+B.

В этом состоит процесс взятия производной, или дифференциро­вания функций. На самом деле он несколько легче, чем это ка­жется на первый взгляд. Заметьте, что если в разложениях, по­добных предыдущим, встречаются члены, пропорциональные (Dt)2 или (Dt)3 или еще более высоким степеням, то их можно сразу вычеркнуть, поскольку они все равно обратятся в нуль, когда в конце мы будем Dt устремлять к нулю. После небольшой тренировки вы сразу будете видеть, что нужно оставлять, а что сразу отбрасывать. Существует много правил и формул для дифференцирования различных видов функций. Их можно либо запомнить, либо пользоваться специальными таблицами. Небольшой список таких правил приводится в табл. 8,3.

Таблица 8.3 · некоторые производные

s, u, v, w — произвольные функции;

а, b, с, n — произвольные постоянные.

§ 4. Расстояние как интеграл

Обсудим теперь обратную проблему. Пусть вместо таблицы расстояний нам дана таблица скоростей в различные моменты времени, начиная с нуля. В табл. 8.4 представлена зависимость скорости падающего шара от времени. Аналогичную таблицу можно составить и для машины, если записывать показания спидометра через каждую минуту или полминуты. Но можно ли, зная скорость машины в любой момент времени, вычислить расстояние, которое ею было пройдено?

Таблица 8.4 · скорость падающего шара

Эта задача обратна той, которую мы только что рассмотрели. Как же решить ее, если скорость машины непостоянна, если она то ускоряется до 90 км/час, то замедляется, затем где-то останавливается у свето­фора и т.д.? Сделать это нетрудно. Нужно использовать ту же идею и выражать полное расстояние через бесконечно малые его части. Пусть в первую секунду скорость будет v1 , тогда по формуле Ds= v1Dt можно вычислить расстояние, пройденное за эту секунду. В следующую секунду скорость будет несколько другой, хотя, может быть, и близкой к первоначальной, а расстояние, пройденное машиной за вторую секунду, будет равно новой скорости, умноженной на интервал времени (1 сек). Этот процесс можно продолжить дальше, до самого конца пути. В ре­зультате мы получим много маленьких отрезков, которые в сум­ме дадут весь путь. Таким образом, путь является суммой ско­ростей, умноженных на отдельные интервалы времени, или s = SvDt,где греческая буква S (сигма) означает сумми­рование. Точнее, это будет сумма скоростей в некоторые мо­менты времени, скажем ti, умноженные на Dt:

1 ... 31 32 33 34 35 ... 60 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Ричард Фейнман - 1. Современная наука о природе, законы механики, относящееся к жанру Физика. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)