`
Читать книги » Книги » Научные и научно-популярные книги » Деловая литература » Игра в цифры. Как аналитика позволяет видеоиграм жить лучше - Василий Сабиров

Игра в цифры. Как аналитика позволяет видеоиграм жить лучше - Василий Сабиров

1 ... 40 41 42 43 44 ... 65 ВПЕРЕД
Перейти на страницу:
Допустим, не планировать массовую закупку трафика на август, а потерпеть до сентября. Вопрос планирования выручки вообще очень важен, и, пожалуй, в любой компании его решают. Сезонность – один из способов сделать свои прогнозы значительно точнее.

Во-вторых, сезонность можно использовать себе во благо. Если вы знаете, что в декабре у вас будет много пользователей и средний доход на пользователя будет высок, то есть смысл увеличить его, предложив этим «горячим» пользователям холодного месяца более выгодные скидки и запланировав на этот период внутриигровые активности.

Интересный вопрос: можно ли бороться с сезонностью? Допустим, вы знаете, что в июле ARPDAU у вас будет самым низким за год. Нужно ли пытаться повысить его и бомбить пользователей заманчивыми июльскими скидками?

Наш опыт говорит, что бороться с сезонностью бесполезно: если ваш клиент уехал в летний отпуск, то он и будет пребывать в этом отпуске, что бы вы ни делали. Лучше сосредоточиться на том, чтобы мультиплицировать сезонность «хороших» месяцев, увеличивая и без того хороший доход, чем пытаться поднять из мертвых доход «плохих». Еще один вариант: на время сезонного спада увеличивать аудиторию стран, где сезонность ведет себя обратным образом, диверсифицируя таким образом свой доход.

Советы по прогнозированию дохода

Поговорим о каждом способе отдельно, оформив их в виде советов начинающим аналитикам.

Совет 1. ARMA, ARIMA

О сезонности мы достаточно много поговорили в предыдущем разделе, а здесь давайте обратимся к методам ARMA и ARIMA.

Эти модели являются развитием модели авторегрессии. Собственно, авторегрессия входит в них, и AR в их названиях как раз ее и обозначает. А MA обозначает скользящее среднее (Moving Average), и это говорит нам о том, что модели еще глубже проникают в данные, лучше распознавая их внутренние закономерности.

Пример реализации модели ARIMA в пакете Statistica

В Excel реализовать их уже не так просто (хотя уже есть соответствующие надстройки), но по-прежнему возможно. Лучше всего, конечно, воспользоваться статистическими инструментами. Я рекомендовал бы SPSS или Statistica, но моя рекомендация базируется всего лишь на опыте личного использования. Также, конечно, есть соответствующие пакеты на R и Python.

Как правило, ARMA и ARIMA дают прогнозы более точные, чем простая авторегрессия, но прирост точности уже не так велик, как у авторегрессии по сравнению с трендами и сезонностью. Поэтому если вам нужен быстрый прогноз, то в сторону ARMA и ARIMA можно не копать.

Совет 2. Не забывайте о регрессионных моделях

Вообще регрессия – метод довольно универсальный. Его преимущество перед временными рядами в том, что в случае временных рядов вы делаете прогноз только на основании значений дохода за предыдущие периоды, а в регрессионных моделях вы рассматриваете еще и другие метрики.

Случай из жизни

Однажды, еще до того, как я обосновался в игровой индустрии, я работал с администрацией города. Я сделал красивую и вполне точную модель прогнозирования чего-то (уже и не упомню), связанного с налогами, а значит, пополняющего городскую казну. На презентации модели собралось много городских чиновников, и к ним вышел я. Вчерашний выпускник, несколько волнуюсь, надел красивый костюм и выучил речь. Модель была, конечно же, регрессионная, я о ней рассказал и перешел к тем перспективам, которые откроются чиновникам, если они внедрят мою модель.

Но что-то пошло не так. А именно то, что я был прерван одним из чиновников, который, надо сказать, довольно возмущенно сказал: «Погодите! А почему модель у вас регрессионная? У нас ведь город прогрессивный, и мы смотрим в будущее, а вы тут о регрессе, понимаешь ли!»

Смех смехом, но для меня это стало уроком. Не стоит переоценивать того, насколько люди действительно говорят с тобой на одном языке и владеют той же терминологией, что и ты. В частности, чаще всего ответом на вопрос «Знакомы ли вы с математикой и статистикой?» будет: «Ну, когда-то изучали», а поэтому никогда не будет лишним заранее проговорить основы и раскрыть те термины, которые собираешься использовать.

Существует несколько способов посчитать доход. Например, доход – это аудитория, умноженная на ARPU (доход с пользователя). Аудитория – количественная метрика, она говорит о масштабе проекта, на нее сильно влияет трафик. А доход с пользователя – метрика качественная, говорящая о том, насколько ваши пользователи готовы платить. И эти метрики можно и нужно рассматривать и прогнозировать отдельно: они ведут себя по-разному и на них влияют разные факторы.

Похожие рассуждения можно проделать, рассмотрев и другую формулу дохода: платящие пользователи, умноженные на доход с платящего (ARPPU). Да и вообще, теоретически можно «скормить» регрессионной модели все имеющиеся у вас метрики, пускай сама все считает и находит закономерности.

Пример реализации линейной регрессии на Python

Буквально несколько советов.

– Если это возможно (в Excel – не всегда), то включайте в модель только значимые переменные. Если вы даете на вход сто метрик, то необязательно все они должны участвовать в итоговом уравнении.

– Старайтесь, чтобы метрики, которые вы даете на вход, были максимально независимы друг от друга и слабо коррелировали. В противном случае вы рискуете получить неустойчивый результат (который хорошо повторит ваши исходные данные, но будет выдавать что-то странное, когда речь пойдет о прогнозе).

– Изучайте остатки. Если вы изучали регрессию в вузе, то наверняка помните страшное слово «гетероскедастичность» – речь о ней самой. Если вы все сделали правильно, то, взглянув на график остатков, вы ничего не сможете сказать: там будет непредсказуемая случайная величина с математическим ожиданием, равным нулю. Если же вы видите в остатках какую-то закономерность (допустим, синусоиду), то, возможно, вы как раз нарвались на гетероскедастичность – то есть не учли дополнительную логику, по которой распределены данные. И в этом случае вам надо просто изменить уравнение регрессии, добавив в него неучтенное уравнение (в нашем случае – синусоиду).

Пример гетероскедастичности: на графике остатков видно, что в них наблюдается как минимум линейная закономерность. Стоит перестроить уравнение регрессии

Совет 3. Стройте кастомные модели под свой проект

На временных рядах и регрессии свет клином не сошелся. Вы всегда можете строить свои модели, учитывающие логику вашего продукта.

Вот вам пример модели, которую люблю строить я.

– Мы можем посчитать, сколько пользователей в данный момент проживает свой первый, второй, третий и т. д. месяц в проекте.

– Мы можем посчитать процент пользователей, которые остаются активными и на второй месяц. А также процент перехода из второго месяца в третий и т. д.

– Наконец, мы

1 ... 40 41 42 43 44 ... 65 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Игра в цифры. Как аналитика позволяет видеоиграм жить лучше - Василий Сабиров, относящееся к жанру Деловая литература / Менеджмент и кадры / Программирование. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)