Необъятный мир: Как животные ощущают скрытую от нас реальность - Эд Йонг

Необъятный мир: Как животные ощущают скрытую от нас реальность читать книгу онлайн
Рейтинги и премии
• Бестселлер The New York Times
• Входит топ-10 лучших книг года по версии The Wall Street Journal, The New York Times, Time, People, The Philadelphia Inquirer, Slate, Reader’s Digest, Chicago Public Library, Outside, Publishers Weekly, BookPage
• Названа одной из лучших книг года изданиями The New Yorker, The Washington Post, The Guardian, The Economist, Smithsonian Magazine, Prospect (UK), Globe & Mail, Esquire, Oprah Daily, Mental Floss, Marginalian, She Reads, Kirkus Reviews, Library Journal
• Книга получила медаль Эндрю Карнеги (2023)
О чем
Лауреат Пулитцеровской премии журналист Эд Йонг приглашает читателей в путешествие по ошеломительно разным способами, с помощью которых животные, от крошечных насекомых до огромных млекопитающих, воспринимают окружающий мир.
Наша планета полнится бесчисленными вкусами и звуками, текстурами и запахами, оттенками и вибрациями, электрическими и магнитными полями, но любое животное, включая и человека, с рождения и до смерти заключено внутри своего особого сенсорного пузыря – или, как говорят ученые, умвельта, – воспринимая всеми органами чувств лишь малую толику нашего необъятного мира.
В своей книге «Необъятный мир» Йонг выводит нас за границы нашего умвельта и вместе с нами пробует вообразить, каково это – чувствовать эхо порхающей бабочки, электрический заряд цветка или гидродинамический след давно уплывшей сельди. Мы отправимся по следам ищущих пожарища жуков, ориентирующихся по магнитному полю Земли черепах и наполняющих воду электрическими сигналами африканских рыб. Мы взглянем на мир четырьмя парами глаз паука-скакуна, послушаем вибрации крохотных букашек и выясним, что морда крокодила не менее чувствительна, чем пальцы хирурга. Мы познакомимся с самыми последними открытиями в области сенсорной зоологии, поймем, чем грозит животному миру звуковое и световое загрязнение окружающей среды, и узнаем, чем интересуется собака у ближайшего столба.
Марсель Пруст когда-то написал, что «единственное подлинное путешествие – это не путешествие к новым пейзажам, а обладание другими глазами». Книга Эда Йонга дает читателям уникальную возможность попутешествовать именно таким образом.
Земля полнится звуками и образами, текстурами и вибрациями, запахами и вкусами, электрическими и магнитными полями. Но каждое из живых существ приобщается лишь к небольшой части этой сокровищницы. Каждое заключено в собственном, только ему присущем сенсорном пузыре, пропускающем лишь отдельные отголоски необъятного мира.
Krestel, D., et al. (1984) Behavioral determination of olfactory thresholds to amyl acetate in dogs, Neuroscience and Biobehavioral Reviews, 8(2), 169–174.
Kröger, R. H. H., and Goiricelaya, A. B. (2017) Rhinarium temperature dynamics in domestic dogs, Journal of Thermal Biology, 70, 15–19.
Krumm, B., et al. (2017) Barn owls have ageless ears, Proceedings of the Royal Society B: Biological Sciences, 284(1863), 20171584.
Kuhn, R. A., et al. (2010) Hair density in the Eurasian otter Lutra lutra and the sea otter Enhydra lutris, Acta Theriologica, 55(3), 211–222.
Kuna, V. M., and Nábělek, J. L. (2021) Seismic crustal imaging using fin whale songs, Science, 371(6530), 731–735.
Kunc, H., et al. (2014) Anthropogenic noise affects behavior across sensory modalities, The American Naturalist, 184 (4), E93–E100.
Kürten, L., and Schmidt, U. (1982) Thermoperception in the common vampire bat (Desmodus rotundus), Journal of Comparative Physiology A, 146(2), 223–228.
Kwon, D. (2019) Watcher of whales: A profile of Roger Payne. The Scientist. Available at: www.the-scientist.com/profile/watcher-of-whales-a-profile-of-roger-payne-66610.
Kyba, C. C. M., et al. (2017) Artificially lit surface of Earth at night increasing in radiance and extent, Science Advances, 3(11), e1701528.
Land, M. F. (1966) A multilayer interference reflector in the eye of the scallop, Pecten maximus, Journal of Experimental Biology, 45(3), 433–447.
Land, M. F. (1969a) Movements of the retinae of jumping spiders (Salticidae: Dendryphantinae) in response to visual stimuli, Journal of Experimental Biology, 51(2), 471–493.
Land, M. F. (1969b) Structure of the retinae of the principal eyes of jumping spiders (Salticidae: Dendryphantinae) in relation to visual optics, Journal of Experimental Biology, 51(2), 443–470.
Land, M. F. (2003) The spatial resolution of the pinhole eyes of giant clams (Tridacna maxima), Proceedings of the Royal Society B: Biological Sciences, 270(1511), 185–188.
Land, M. F. (2018) Eyes to see: The astonishing variety of vision in nature. Oxford: Oxford University Press.
Land, M. F., et al. (1990) The eye-movements of the mantis shrimp Odontodactylus scyllarus (Crustacea: Stomatopoda), Journal of Comparative Physiology A, 167(2), 155–166.
Landler, L., et al. (2018) Comment on "Magnetosensitive neurons mediate geomagnetic orientation in Caenorhabditis elegans," eLife, 7, e30187.
Landolfa, M. A., and Barth, F. G. (1996) Vibrations in the orb web of the spider Nephila clavipes: Cues for discrimination and orientation, Journal of Comparative Physiology A, 179(4), 493–508.
Lane, K. A., Lucas, K. M., and Yack, J. E. (2008) Hearing in a diurnal, mute butterfly, Morpho peleides (Papilionoidea, Nymphalidae), Journal of Comparative Neurology, 508(5), 677–686.
Laska, M. (2017) Human and animal olfactory capabilities compared, in Buettner, A. (ed), Springer handbook of odor, 81–82. New York: Springer.
Laughlin, S. B., and Weckström, M. (1993) Fast and slow photoreceptors – A comparative study of the functional diversity of coding and conductances in the Diptera, Journal of Comparative Physiology A, 172(5), 593–609.
Laursen, W. J., et al. (2016) Low-cost functional plasticity of TRPV1 supports heat tolerance in squirrels and camels, Proceedings of the National Academy of Sciences, 113(40), 11342–11347.
LaVinka, P. C., and Park, T. J. (2012) Blunted behavioral and C Fos responses to acidic fumes in the African naked mole-rat, PLOS One, 7(9), e45060.
Lavoué, S., et al. (2012) Comparable ages for the independent origins of electrogenesis in African and South American weakly electric fishes, PLOS One, 7(5), e36287.
Lawson, S. L., et al. (2018) Relative salience of syllable structure and syllable order in zebra finch song, Animal Cognition, 21(4), 467–480.
Lazzari, C. R. (2009) Orientation towards hosts in haematophagous insects, in Simpson, S., and Casas, J. (eds), Advances in insect physiology, vol. 37, 1–58. Amsterdam: Elsevier.
Lecocq, T., et al. (2020) Global quieting of high-frequency seismic noise due to COVID-19 pandemic lockdown measures, Science, 369(6509), 1338–1343.
Lee-Johnson, C. P., and Carnegie, D. A. (2010) Mobile robot navigation modulated by artificial emotions, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 40(2), 469–480.
Legendre, F., Marting, P. R., and Cocroft, R. B. (2012) Competitive masking of vibrational signals during mate searching in a treehopper, Animal Behaviour, 83(2), 361–368.
Leitch, D. B., and Catania, K. C. (2012) Structure, innervation and response properties of integumentary sensory organs in crocodilians, Journal of Experimental Biology, 215(23), 4217–4230.
Lenoir, A., et al. (2001) Chemical ecology and social parasitism in ants, Annual Review of Entomology, 46(1), 573–599.
Leonard, M. L., and Horn, A. G. (2008) Does ambient noise affect growth and begging call structure in nestling birds? Behavioral Ecology, 19(3), 502–507.
Leonhardt, S. D., et al. (2016) Ecology and evolution of communication in social insects, Cell, 164(6), 1277–1287.
Levy, G., and Hochner, B. (2017) Embodied organization of Octopus vulgaris morphology, vision, and locomotion, Frontiers in Physiology, 8, 164.
Lewin, G., Lu, Y., and Park, T. (2004) A plethora of painful molecules, Current Opinion in Neurobiology, 14(4), 443–449.
Lewis, E. R., et al. (2006) Preliminary evidence for the use of microseismic cues for navigation by the Namib golden mole, Journal of the Acoustical Society of America, 119(2), 1260–1268.
Lewis, J. (2014) Active electroreception: Signals, sensing, and behavior, in Evans, D. H., Claiborne, J. B., and Currie, S. (eds), The physiology of fishes, 4th ed., 373–388. Boca Raton, FL: CRC Press.
Li, F. (2013) Taste perception: From the tongue to the testis, Molecular Human Reproduction, 19(6), 349–360.
Li, L., et al. (2015) Multifunctionality of chiton biomineralized armor with an integrated visual system, Science, 350(6263), 952–956.
Lind, O., et al. (2013) Ultraviolet sensitivity and colour vision in raptor foraging, Journal of Experimental Biology, 216(Pt 10), 1819–1826.
Linsley, E. G. (1943) Attraction of Melanophila beetles by fire and smoke, Journal of Economic Entomology, 36(2), 341–342.
Linsley, E. G., and Hurd, P. D. (1957) Melanophila beetles at cement plants in Southern California (Coleoptera, Buprestidae), Coleopterists Bulletin, 11(1/2), 9–11.
Lissmann, H. W. (1951) Continuous electrical signals from the tail of a fish, Gymnarchus niloticus Cuv., Nature, 167(4240), 201–202.
Lissmann, H. W. (1958) On the function and evolution of electric organs in fish, Journal of Experimental Biology, 35(1), 156–191.
Lissmann, H. W., and Machin, K. E. (1958) The mechanism of object location in Gymnarchus niloticus and similar fish, Journal of Experimental Biology, 35(2), 451–486.
Liu, M. Z., and Vosshall, L. B. (2019) General visual and contingent thermal cues interact to elicit attraction in female Aedes aegypti mosquitoes, Current Biology, 29(13), 2250–2257.e4.
Liu, Z., et al. (2014) Repeated functional convergent effects of NaV1.7 on acid insensitivity in hibernating mammals, Proceedings of the Royal Society B: Biological Sciences, 281(1776), 20132950.
Lloyd, E., et al. (2018) Evolutionary shift towards lateral line dependent prey capture behavior in the blind Mexican cavefish, Developmental Biology, 441(2), 328–337.
Lohmann, K. J. (1991) Magnetic orientation by hatchling loggerhead sea turtles (Caretta caretta), Journal of Experimental Biology, 155, 37–49.
Lohmann, K., et al. (1995) Magnetic orientation of spiny lobsters in the ocean: Experiments with undersea coil systems, Journal of Experimental Biology, 198(Pt 10), 2041–2048.
Lohmann, K. J., et al. (2001) Regional magnetic fields as navigational markers for sea turtles, Science, 294(5541), 364–366.
Lohmann, K. J., et al. (2004) Geomagnetic map used in sea-turtle navigation, Nature, 428(6986), 909–910.
Lohmann, K., and Lohmann, C. (1994) Detection of magnetic inclination angle by sea turtles: A possible mechanism for determining latitude, Journal of Experimental Biology, 194(1), 23–32.
Lohmann, K. J., and Lohmann, C. M. F. (1996) Detection of magnetic field intensity by sea turtles, Nature, 380(6569), 59–61.
Lohmann, K. J., and Lohmann, C. M. F. (2019) There and back again: Natal homing by magnetic navigation in sea turtles and salmon, Journal of Experimental Biology, 222(Suppl.