Необъятный мир: Как животные ощущают скрытую от нас реальность - Эд Йонг

Необъятный мир: Как животные ощущают скрытую от нас реальность читать книгу онлайн
Рейтинги и премии
• Бестселлер The New York Times
• Входит топ-10 лучших книг года по версии The Wall Street Journal, The New York Times, Time, People, The Philadelphia Inquirer, Slate, Reader’s Digest, Chicago Public Library, Outside, Publishers Weekly, BookPage
• Названа одной из лучших книг года изданиями The New Yorker, The Washington Post, The Guardian, The Economist, Smithsonian Magazine, Prospect (UK), Globe & Mail, Esquire, Oprah Daily, Mental Floss, Marginalian, She Reads, Kirkus Reviews, Library Journal
• Книга получила медаль Эндрю Карнеги (2023)
О чем
Лауреат Пулитцеровской премии журналист Эд Йонг приглашает читателей в путешествие по ошеломительно разным способами, с помощью которых животные, от крошечных насекомых до огромных млекопитающих, воспринимают окружающий мир.
Наша планета полнится бесчисленными вкусами и звуками, текстурами и запахами, оттенками и вибрациями, электрическими и магнитными полями, но любое животное, включая и человека, с рождения и до смерти заключено внутри своего особого сенсорного пузыря – или, как говорят ученые, умвельта, – воспринимая всеми органами чувств лишь малую толику нашего необъятного мира.
В своей книге «Необъятный мир» Йонг выводит нас за границы нашего умвельта и вместе с нами пробует вообразить, каково это – чувствовать эхо порхающей бабочки, электрический заряд цветка или гидродинамический след давно уплывшей сельди. Мы отправимся по следам ищущих пожарища жуков, ориентирующихся по магнитному полю Земли черепах и наполняющих воду электрическими сигналами африканских рыб. Мы взглянем на мир четырьмя парами глаз паука-скакуна, послушаем вибрации крохотных букашек и выясним, что морда крокодила не менее чувствительна, чем пальцы хирурга. Мы познакомимся с самыми последними открытиями в области сенсорной зоологии, поймем, чем грозит животному миру звуковое и световое загрязнение окружающей среды, и узнаем, чем интересуется собака у ближайшего столба.
Марсель Пруст когда-то написал, что «единственное подлинное путешествие – это не путешествие к новым пейзажам, а обладание другими глазами». Книга Эда Йонга дает читателям уникальную возможность попутешествовать именно таким образом.
Земля полнится звуками и образами, текстурами и вибрациями, запахами и вкусами, электрическими и магнитными полями. Но каждое из живых существ приобщается лишь к небольшой части этой сокровищницы. Каждое заключено в собственном, только ему присущем сенсорном пузыре, пропускающем лишь отдельные отголоски необъятного мира.
Jordan, G., et al. (2010) The dimensionality of color vision in carriers of anomalous trichromacy, Journal of Vision, 10(8), 12.
Jordan, G., and Mollon, J. (2019) Tetrachromacy: The mysterious case of extra-ordinary color vision, Current Opinion in Behavioral Sciences, 30, 130–134.
Jordt, S.-E., and Julius, D. (2002) Molecular basis for species-specific sensitivity to "hot" chili peppers, Cell, 108(3), 421–430.
Josberger, E. E., et al. (2016) Proton conductivity in ampullae of Lorenzini jelly, Science Advances, 2(5), e1600112.
Jung, J., et al. (2019) How do red-eyed treefrog embryos sense motion in predator attacks? Assessing the role of vestibular mechanoreception, Journal of Experimental Biology, 222(21), jeb206052.
Jung, K., Kalko, E. K. V., and von Helversen, O. (2007) Echolocation calls in Central American emballonurid bats: Signal design and call frequency alternation, Journal of Zoology, 272(2), 125–137.
Kajiura, S. M. (2001) Head morphology and electrosensory pore distribution of carcharhinid and sphyrnid sharks, Environmental Biology of Fishes, 61(2), 125–133.
Kajiura, S. M. (2003) Electroreception in neonatal bonnethead sharks, Sphyrna tiburo, Marine Biology, 143(3), 603–611.
Kajiura, S. M., and Holland, K. N. (2002) Electroreception in juvenile scalloped hammerhead and sandbar sharks, Journal of Experimental Biology, 205(23), 3609–3621.
Kalberer, N. M., Reisenman, C. E., and Hildebrand, J. G. (2010) Male moths bearing transplanted female antennae express characteristically female behaviour and central neural activity, Journal of Experimental Biology, 213(8), 1272–1280.
Kalka, M. B., Smith, A. R., and Kalko, E. K. V. (2008) Bats limit arthropods and herbivory in a tropical forest, Science, 320(5872), 71.
Kalmijn, A. J. (1971) The electric sense of sharks and rays, Journal of Experimental Biology, 55(2), 371–383.
Kalmijn, A. J. (1974) The detection of electric fields from inanimate and animate sources other than electric organs, in Fessard, A. (ed), Electroreceptors and other specialized receptors in lower vertebrates, 147–200. Berlin: Springer.
Kalmijn, A. J. (1982) Electric and magnetic field detection in elasmobranch fishes, Science, 218(4575), 916–918.
Kaminski, J., et al. (2019) Evolution of facial muscle anatomy in dogs, Proceedings of the National Academy of Sciences, 116(29), 14677–14681.
Kane, S. A., Van Beveren, D., and Dakin, R. (2018) Biomechanics of the peafowl's crest reveals frequencies tuned to social displays, PLOS One, 13(11), e0207247.
Kant, I. (2007) Anthropology, history, and education. Cambridge: Cambridge University Press.
Kapoor, M. (2020) The only catfish native to the western U.S. is running out of water, High Country News. Available at: www.hcn.org/issues/52.7/fish-the-only-catfish-native-to-the-western-u-s-is-running-out-of-water.
Kardong, K. V., and Berkhoudt, H. (1999) Rattlesnake hunting behavior: Correlations between plasticity of predatory performance and neuroanatomy, Brain, Behavior and Evolution, 53(1), 20–28.
Kardong, K. V., and Mackessy, S. P. (1991) The strike behavior of a congenitally blind rattlesnake, Journal of Herpetology, 25(2), 208–211.
Kasumyan, A. O. (2019) The taste system in fishes and the effects of environmental variables, Journal of Fish Biology, 95(1), 155–178.
Katz, H. K., et al. (2015) Eye movements in chameleons are not truly independent – Evidence from simultaneous monocular tracking of two targets, Journal of Experimental Biology, 218(13), 2097–2105.
Kavaliers, M. (1988) Evolutionary and comparative aspects of nociception, Brain Research Bulletin, 21(6), 923–931.
Kawahara, A. Y., et al. (2019) Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths, Proceedings of the National Academy of Sciences, 116(45), 22657–22663.
Kelber, A., Balkenius, A., and Warrant, E. J. (2002) Scotopic colour vision in nocturnal hawkmoths, Nature, 419(6910), 922–925.
Kelber, A., Vorobyev, M., and Osorio, D. (2003) Animal colour vision – Behavioural tests and physiological concepts, Biological Reviews of the Cambridge Philosophical Society, 78(1), 81–118.
Keller, A., et al. (2007) Genetic variation in a human odorant receptor alters odour perception, Nature, 449(7161), 468–472.
Keller, A., and Vosshall, L. B. (2004a) A psychophysical test of the vibration theory of olfaction, Nature Neuroscience, 7(4), 337–338.
Keller, A., and Vosshall, L. B. (2004b) Human olfactory psychophysics, Current Biology, 14(20), R875–R878.
Kempster, R. M., Hart, N. S., and Collin, S. P. (2013) Survival of the stillest: Predator avoidance in shark embryos, PLOS One, 8(1), e52551.
Ketten, D. R. (1997) Structure and function in whale ears, Bioacoustics, 8(1–2), 103–135.
Key, B. (2016) Why fish do not feel pain, Animal Sentience, 1(3).
Key, F. M., et al. (2018) Human local adaptation of the TRPM8 cold receptor along a latitudinal cline, PLOS Genetics, 14(5), e1007298.
Kick, S., and Simmons, J. (1984) Automatic gain control in the bat's sonar receiver and the neuroethology of echolocation, Journal of Neuroscience, 4(11), 2725–2737.
Kimchi, T., Etienne, A. S., and Terkel, J. (2004) A subterranean mammal uses the magnetic compass for path integration, Proceedings of the National Academy of Sciences, 101(4), 1105–1109.
King, J. E., Becker, R. F., and Markee, J. E. (1964) Studies on olfactory discrimination in dogs: (3) Ability to detect human odour trace, Animal Behaviour, 12(2), 311–315.
Kingston, A. C. N., et al. (2015) Visual phototransduction components in cephalopod chromatophores suggest dermal photoreception, Journal of Experimental Biology, 218(10), 1596–1602.
Kirschfeld, K. (1976) The resolution of lens and compound eyes, in Zettler, F., and Weiler, R. (eds), Neural principles in vision, 354–370. Berlin: Springer.
Kirschvink, J., et al. (1997) Measurement of the threshold sensitivity of honeybees to weak, extremely low-frequency magnetic fields, Journal of Experimental Biology, 200(Pt 9), 1363–1368.
Kish, D. (1995) Echolocation: How humans can "see" without sight. Unpublished master's thesis, California State University.
Kish, D. (2015) How I use sonar to navigate the world. TED Talk. Available at: www.ted.com/talks/daniel_kish_how_i_use_sonar_to_navigate_the_world.
Klärner, D., and Barth, F. G. (1982) Vibratory signals and prey capture in orb-weaving spiders (Zygiella x-notata, Nephila clavipes; Araneidae), Journal of Comparative Physiology, 148(4), 445–455.
Klopsch, C., Kuhlmann, H. C., and Barth, F. G. (2012) Airflow elicits a spider's jump towards airborne prey. I. Airflow around a flying blowfly, Journal of the Royal Society Interface, 9(75), 2591–2602.
Klopsch, C., Kuhlmann, H. C., and Barth, F. G. (2013) Airflow elicits a spider's jump towards airborne prey. II. Flow characteristics guiding behaviour, Journal of the Royal Society Interface, 10(82), 20120820.
Knop, E., et al. (2017) Artificial light at night as a new threat to pollination, Nature, 548(7666), 206–209.
Knudsen, E. I., Blasdel, G. G., and Konishi, M. (1979) Sound localization by the barn owl (Tyto alba) measured with the search coil technique, Journal of Comparative Physiology A, 133(1), 1–11.
Kober, R., and Schnitzler, H. (1990) Information in sonar echoes of fluttering insects available for echolocating bats, Journal of the Acoustical Society of America, 87(2), 882–896.
Kojima, S. (1990) Comparison of auditory functions in the chimpanzee and human, Folia Primatologica, 55(2), 62–72.
Kolbert, E. (2014) The sixth extinction: An unnatural history. New York: Henry Holt.
Konishi, M. (1969) Time resolution by single auditory neurones in birds, Nature, 222(5193), 566–567.
Konishi, M. (1973) Locatable and nonlocatable acoustic signals for barn owls, The American Naturalist, 107(958), 775–785.
Konishi, M. (2012) How the owl tracks its prey, American Scientist, 100(6), 494.
Koselj, K., Schnitzler, H.-U., and Siemers, B. M. (2011) Horseshoe bats make adaptive prey-selection decisions, informed by echo cues, Proceedings of the Royal Society B: Biological Sciences, 278(1721), 3034–3041.
Koshitaka, H., et al. (2008) Tetrachromacy in a butterfly that has eight varieties of spectral receptors, Proceedings of the Royal Society B: Biological Sciences, 275(1637), 947–954.
Kothari, N. B., et al. (2014) Timing matters: Sonar call groups facilitate target localization in bats, Frontiers