Секс с учеными: Половое размножение и другие загадки биологии - Алексей Алексенко

Секс с учеными: Половое размножение и другие загадки биологии читать книгу онлайн
Величайшие биологи прошлого пытались разобраться в том, для чего живым существам нужно половое размножение, как оно возникло, какую пользу принесло и почему не исчезло. В книге «Секс с учеными» рассказывается, как ученые попытались связать секс с мутационным процессом и в результате создали целую область науки – популяционную генетику. Речь заходит о разделении на два пола, в котором ничего нельзя понять без теории игр, и половых хромосомах, вокруг которых закручиваются увлекательные сюжеты из молекулярной биологии. Затем повествование переходит к мейозу, о котором до сих было крайне затруднительно прочитать что-то понятное неспециалистам. В связи с ним затрагивается и важнейший вопрос современной науки – происхождение жизни на Земле. Наконец, нашлось в книге место и для обсуждения роли секса в жизни общества, о которой все вроде бы давным-давно написано, но лишняя пара глав никому не повредит.
Будет ли обладать эволюционным преимуществом мутация к бесполому размножению у человека? Девушка, получившая в дар от природы способность беременеть просто так, без всякого внешнего повода, скорее всего, станет большой проблемой для медиков и/или социальных служб. Хотя, конечно, романтические фантазии о новом продвинутом разумном виде вроде «Славных Подруг» из романа братьев Стругацких «Улитка на склоне» тоже имеют право на существование.
Для кого
Для всех, кто хочет понять, для чего нужно живым существам половое размножение, как оно возникло, какую пользу принесло и почему не исчезло в процессе эволюции. Эта книга для тех, кто интересуется биологией и генетикой и готов вместе с учеными искать ответы на неразгаданные загадки эволюции.
Каждый сперматозоид Льва Николаевича нес в себе ровно половину его диплоидного генома. За всю его жизнь тринадцать сперматозоидов слились с тринадцатью яйцеклетками его супруги, так что следующему поколению перешло тринадцать половинок генома писателя.
Зачем хромосоме W этот фокус? Хитрость начинает работать, когда W, то есть мутантная Х, оказывается в паре с Y, а значит, вместо ожидаемого самца получается самка. И вот эта самка спаривается с нормальным самцом XY. Их дети таковы: WX, WY, XY и несчастные YY, которые вообще не рождаются и даже не начинают развиваться, так что их как бы и нет. Что мы видим? У ⅔ потомства есть мутантная хромосома W! Это огромный эволюционный выигрыш, ради этого стоило устроить бунт. Потом, по мере распространения W, этот выигрыш, конечно, уменьшается: в браках WW и XY (а также WX и XY) мятежная хромосома не получает никакой выгоды – ее сколько было, столько и осталось. Однако поскольку от всех браков с участием W рождается сколько-то WY-самок, то прибыль не обращается в ноль.
А побочный результат восстания – искаженное соотношение полов. В браке WY с XY будет ⅔ самок. А если мама была WX – дети будут WX, XX, WY и XY, то есть девочек будет ¾.
Как природа такое допустила? Вроде бы, по Фишеру, отбор должен упрямо возвращать соотношение полов к норме – и в случае мейотического драйва, как мы видели, он каждый раз находит способ сделать это. В пятнадцатой главе мы сетовали на печальную судьбу самцов морского слона: лишь каждый 25-й имеет нормальную интимную жизнь, а остальные вообще непонятно зачем родились, лишь впустую тратят ресурсы стада и портят всем настроение своей экзистенциальной тоской. Тогда мы сказали, что природе на это наплевать, потому что результат отбора определяется не всеобщей пользой и гармонией, а балансом интересов генов: есть равновесие Нэша, и с него так просто не слезешь. А это равновесие наступает, когда самцов и самок поровну. И все рассуждения о том, как полезно было бы для общества подсократить самцов (или, напротив, наделать их побольше, если идет война), никуда не ведут.
Как ни странно, в случае леммингов некоторые зоологи, которых жизнь и труды классиков ничему не научили, начали было рассуждать именно в таком ключе: раз отбор терпит перевес в сторону самок, значит, леммингам это чем-то полезно. Ну вот, например: популяции этих грызунов претерпевают резкие колебания численности, потому что в один год еды много, а в другой почти совсем нет. Наверное, в те годы, когда еды нет, перевес самок – это хорошо для вида, потому что самка поест досыта и родит маленьких леммингов, а самец поест и… сами понимаете. Но, как мы уже не раз видели в этой истории, рассуждения с точки зрения «пользы вида» обычно заводят в тупик. А загадка разрешается совсем не так, и, когда жизнь леммингов смоделировали на компьютере, это стало вполне ясно.
Весь фокус в том, что, хотя мятежная W-хромосома вроде бы эмоционально «против самцов», она достигает своей выгоды именно в паре с Y-хромосомой, то есть у потомства особей с кариотипом WY. Предположим, что какой-то аутосомный ген решил побороться со зловредной W-хромосомой, сдвигая соотношение в сторону самцов, то есть побуждая лемминга производить больше спермиев, несущих Y. Можете взять ручку и бумагу, а можете подсчитать в уме или даже поверить на слово: это приведет к тому, что в популяции будет появляться больше самок с кариотипом WY, а это та самая комбинация, которая приносит хромосоме W ее эволюционную выгоду. Согласно теоретической модели, мятежная хромосома должна достичь в популяции определенной пропорции, при которой наступает новое равновесие: любые малые отклонения будут устраняться самой природой. Вот как несложно оказалось победить этот самый принцип Фишера его собственным оружием: против Нэша нет приема, кроме другого Нэша.
Но мы начали с проблемы лишнего человека на танцах, затронутой в популярной песне 1960-х; надо к ней и вернуться. Итак, несмотря на принцип Фишера, соотношение полов нередко норовит уклониться от вожделенного 1: 1. Иногда такое отклонение уже заложено в самом принципе. Напомним, что в чистом виде он работает лишь в том случае, если родительский вклад в детенышей обоих полов строго одинаков. Однако все любители собак в курсе, что кобели рождаются немного крупнее сук и, соответственно, высасывают из мамы-суки больше молока. Получается, что родительский вклад в кобелей должен быть больше. Природа могла бы это учесть в статистике зачатий, однако вот беда: если соотношение 1: 1 очень удачно получается из менделевских законов, то ради соотношения 10: 9 природе пришлось бы сильно повозиться. Но если так получилось само из-за каких-то второстепенных причин, отбор, наверное, это бы поддержал. Скажем, у людей частота выкидышей слегка выше для плода женского пола, а зато потом более высокая смертность начинает работать против мальчиков. В результате в репродукции участвует чуть меньше мужчин, чем женщин, в полном соответствии с песней. Но кто, скажите, подсчитывал родительский вклад в детенышей мужского и женского пола, если речь идет о людях?
Вот, скажем, одна из возможных причин отклонения от желанного 1: 1: у самцов млекопитающих всего одна Х-хромосома, и рецессивные летальные мутации, которые случаются на этой хромосоме, убьют самцов, а самкам могут и не повредить. Значит, у нас, с нашей системой XY, самцов должно быть чуть меньше. А у птиц, с их ZW, – наоборот, чуть больше. Это рассуждение на пальцах, но так ли это в реальности? Не так давно венгерские биологи проанализировали данные для нескольких сотен видов позвоночных и убедились, что так оно и есть: соотношение полов обычно слегка отклоняется от 1: 1 с преимуществом для гомогаметного пола. Об этом написал прекрасную статью коллега-популяризатор Александр Марков.
Любопытно, что авторы статьи находят и другие возможные причины для численного преобладания гомогаметных полов, кроме той, о которой мы упомянули (частичная гаплоидность самцов). Одна из них связана с уже упомянутым мейотическим драйвом. Зловредный драйвер, отклоняющий соотношение полов в пользу собственной хромосомы, может теоретически завестись на любой из половых хромосом, однако на Х или на Z для этого просто физически больше места, чем на крохотных Y и W.
Наконец, любопытная причина может быть связана с особой ролью самцов в эволюции: для них свойственно приносить личное благополучие в жертву любви, или, точнее, индивидуальную соматическую приспособленность – репродуктивному успеху. Если рецессивный ген задает такую стратегию, ему логично прописаться на Х-хромосоме, поскольку для самок он попросту вреден. А у тех, кто пользуется системой ZW (гетерогаметные самки), он мог бы теоретически занять место на W, однако это куда менее вероятно, потому что опять же W меньше. Как бы то ни было, этот феномен мог бы также слегка повлиять на усредненную статистику позвоночных, сдвинув соотношение полов в сторону гомогаметного пола.
Если уж мы упомянули об особой роли самцов в эволюции и о том, как природа, возможно, использует самцов как своего рода полигон для отбора, принося их в жертву, чтобы отобрать (для самок) самые лучшие гены, – нельзя не вспомнить о смелых гипотезах покойного профессора Геодакяна. Однако для этого понадобится целая новая глава.
БИБЛИОГРАФИЯ
Марков А. Обнаружена связь между системой хромосомного определения пола и соотношением самцов и самок в популяции. См.: https://elementy.ru/novosti_nauki/432592/Obnaruzhena_svyaz_mezhdu_sistemoy_khromosomnogo_opredeleniya_pola_i_sootnosheniem_samtsov_i_samok_v_populyatsii
Courret C., Chang C.-H., Wei K. H.-C., et al. Meiotic Drive Mechanisms: Lessons from Drosophila. Proceedings. Biological Sciences. 2019. 286(1913): 28620191430.
Fredga K., Gropp A., Winking H., Frank F. A Hypothesis Explaining the Exceptional Sex Ratio in the Wood Lemming (Myopus schisticolor). Hereditas. 1977. 85(1): 101–104.
Gropp A., Winking H., Frank F., et al. Sex-Chromosome Aberrations in Wood Lemmings (Myopus schisticolor). Cytogenetics and Cell Genetics. 1976. 17(6): 343–358.
Jaenike J. Sex Chromosome Meiotic Drive. Annual Review of Ecology and Systematics. 2001. 32: 25–49.
Muirhead C. A., Presgraves D. C. Satellite DNA-Mediated Diversification of a Sex-Ratio Meiotic Drive Gene Family in Drosophila. Nature Ecology & Evolution. 2021. 5(12): 1604–1612.
Pipoly I., Bókony V., Kirkpatrick M., et al. The Genetic Sex-Determination System Predicts Adult Sex Ratios in Tetrapods. Nature. 2015. 527(7576): 91–94.
Tao Y., Masly J. P., Araripe