`
Читать книги » Книги » Компьютеры и Интернет » Программирование » Грокаем алгоритмы. Иллюстрированное пособие для программистов и любопытствующих - Адитья Бхаргава

Грокаем алгоритмы. Иллюстрированное пособие для программистов и любопытствующих - Адитья Бхаргава

1 ... 4 5 6 7 8 ... 46 ВПЕРЕД
Перейти на страницу:
моментально; это лучший возможный случай. Однако «O-большое» описывает худший возможный случай. Фактически вы утверждаете, что в худшем случае придется просмотреть каждую запись в телефонной книге по одному разу. Это и есть время O(n). И это дает определенные гарантии — вы знаете, что простой поиск никогда не будет работать медленнее O(n).

примечание

Наряду с временем худшего случая также полезно учитывать среднее время выполнения. Тема худшего и среднего времени выполнения обсуждается в главе 4.

Типичные примеры «O-большого»

Ниже перечислены пять разновидностей «O-большого», которые будут встречаться вам особенно часто, в порядке убывания скорости выполнения:

• O(log n), или логарифмическое время. Пример: бинарный поиск.

• O(n), или линейное время. Пример: простой поиск.

• O(n* log n). Пример: эффективные алгоритмы сортировки (быстрая сортировка — но об этом в главе 4).

• O(n2). Пример: медленные алгоритмы сортировки (сортировка выбором — см. главу 2).

• O(n!). Пример: очень медленные алгоритмы (задача о коммивояжере — о ней будет рассказано в следующем разделе).

Предположим, вы снова строите сетку из 16 квадратов, и вы можете выбрать для решения этой задачи один из 5 алгоритмов. При использовании первого алгоритма сетка будет построена за время O(log n). В секунду выполняются до 10 операций. С временем O(log n) для построения сетки из 16 квадратов потребуются 4 операции (log 16 равен 4). Итак, сетка будет построена за 0,4 секунды. А если бы было нужно построить 1024 квадрата? На это бы потребовалось log 1024 = 10 операций, или 1 секунда. Напомню, что эти числа получены при использовании первого алгоритма.

Второй алгоритм работает медленнее: за время O(n). Для построения 16 прямо­угольников потребуется 16 операций, а для построения 1024 прямоугольников — 1024 операции. Сколько это составит в секундах?

Ниже показано, сколько времени потребуется для построения сетки с остальными алгоритмами, от самого быстрого до самого медленного:

Существуют и другие варианты времени выполнения, но эти пять встречаются чаще всего.

Помните, что эта запись является упрощением. На практике «O-большое» не удается легко преобразовать в количество операций с такой точностью, но пока нам хватит и этого. Мы еще вернемся к «O-большому» в главе 4, после рассмотрения еще нескольких алгоритмов. А пока перечислим основные результаты:

• Скорость алгоритмов измеряется не в секундах, а в темпе роста количества операций.

• По сути формула описывает, насколько быстро возрастает время выполнения алгоритма с увеличением размера входных данных.

• Время выполнения алгоритмов выражается как «O-большое».

• Время выполнения O(log n) быстрее O(n), а с увеличением размера списка, в котором ищется значение, оно становится намного быстрее.

Упражнения

Приведите время выполнения «O-большое» для каждого из следующих сценариев.

1.3 Известна фамилия, нужно найти номер в телефонной книге.

1.4 Известен номер, нужно найти фамилию в телефонной книге. (Подсказка: вам придется провести поиск по всей книге!)

1.5 Нужно прочитать телефоны всех людей в телефонной книге.

1.6 Нужно прочитать телефоны всех людей, фамилии которых начинаются с буквы «А». (Вопрос с подвохом! В нем задействованы концепции, которые более подробно рассматриваются в главе 4. Прочитайте ответ — скорее всего, он вас удивит!)

Задача о коммивояжере

Наверное, после прочтения предыдущего раздела вы подумали: «Уж мне-то точно не попадется алгоритм с временем O(n!)» Ошибаетесь, и я это сейчас докажу! Мы рассмотрим алгоритм с очень, очень плохим временем выполнения. Это известная задача из области теории вычислений, в которой время выполнения растет с просто ужасающей скоростью, и некоторые очень умные люди считают, что с этим ничего не поделать. Она называется задачей о коммивояжере.

Это коммивояжер.

Он должен объехать 5 городов.

Коммивояжер хочет побывать в каждом из 5 городов так, чтобы при этом проехать минимальное общее расстояние. Одно из возможных решений: нужно перебрать все возможные комбинации порядка объезда городов.

Все расстояния суммируются, после чего выбирается путь с кратчайшим расстоянием. Для 5 городов можно создать 120 перестановок, поэтому решение задачи для 5 городов потребует 120 операций. Для 6 городов количество операций увеличивается до 720 (существуют 720 возможных перестановок). А для 7 городов потребуется уже 5040 операций!

Количество операций стремительно растет

В общем случае для вычисления результата при n элементах потребуется n! (n-факториал) операций. А значит, время выполнения составит O(n!) (такое время называется факториальным). При любом сколько-нибудь серьезном размере списка количество операций будет просто огромным. Скажем, если вы попытаетесь решить задачу для 100+ городов, сделать это вовремя не удастся — Солнце погаснет раньше.

Какой ужасный алгоритм! Значит, коммивояжер должен найти другое решение, верно? Но у него ничего не получится. Это одна из знаменитых нерешенных задач в области теории вычислений. Для нее не существует известного быстрого алгоритма, и ученые считают, что найти более эффективный алгоритм для этой задачи в принципе невозможно. В лучшем случае для нее можно поискать приближенное решение; за подробностями обращайтесь к главе 10.

И последнее замечание: если у вас уже есть опыт программирования, почитайте о бинарных деревьях поиска! Эти структуры данных кратко описаны в последней главе.

Шпаргалка

• Бинарный поиск работает намного быстрее простого.

• Время выполнения O(log n) быстрее O(n), а с увеличением размера списка, в котором ищется значение, оно становится намного быстрее.

• Скорость алгоритмов не измеряется в секундах.

• Время выполнения алгоритма описывается ростом

1 ... 4 5 6 7 8 ... 46 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Грокаем алгоритмы. Иллюстрированное пособие для программистов и любопытствующих - Адитья Бхаргава, относящееся к жанру Программирование. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)