Читать книги » Книги » Компьютеры и Интернет » Прочая околокомпьютерная литература » Охота на электроовец. Большая книга искусственного интеллекта - Сергей Сергеевич Марков

Охота на электроовец. Большая книга искусственного интеллекта - Сергей Сергеевич Марков

Читать книгу Охота на электроовец. Большая книга искусственного интеллекта - Сергей Сергеевич Марков, Сергей Сергеевич Марков . Жанр: Прочая околокомпьютерная литература / Программирование.
Охота на электроовец. Большая книга искусственного интеллекта - Сергей Сергеевич Марков
Название: Охота на электроовец. Большая книга искусственного интеллекта
Дата добавления: 23 январь 2025
Количество просмотров: 17
(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
Читать онлайн

Охота на электроовец. Большая книга искусственного интеллекта читать книгу онлайн

Охота на электроовец. Большая книга искусственного интеллекта - читать онлайн , автор Сергей Сергеевич Марков

Новый этап в области компьютерных технологий часто называют очередной «весной искусственного интеллекта». Её начало обычно отсчитывают с момента появления нейронной сети, сегодня известной под названием AlexNet, успех которой в распознавании зрительных образов возвестил о начале «революции глубокого обучения». В результате этой революции машинам удалось превзойти человеческий уровень при решении множества задач. Сегодня уже мало кого удивляют победы машин над сильнейшими игроками в го, создание ими музыки и картин, предсказание нейронными сетями пространственной структуры белков и другие вещи, которые десять лет назад мы посчитали бы чудесами. Алгоритмы искусственного интеллекта (ИИ) быстро вошли в нашу жизнь и стали её неотъемлемой частью. Например, каждый раз, когда вы делаете фотографию при помощи смартфона, её обработку выполняет нейронная сеть.
На смену весне искусственного интеллекта приходит лето. Эта книга рассказывает о том, какие события в истории науки привели к началу этого лета, о современных технологиях ИИ и их возможностях, а также пытается приоткрыть завесу, скрывающую от нас мир ближайшего будущего.
Мифы и заблуждения об искусственном интеллекте, страхи, насущные проблемы, перспективные направления исследований — обо всём этом вы узнаете из «Большой книги искусственного интеллекта».

Перейти на страницу:
Hattrick-Simpers J., Mehta A. (2018). Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments / Science Advances, Vol. 4, No. 4 // https://doi.org/10.1126/sciadv.aaq1566

3016

Hornby G. S., Globus A., Linden D. S., Lohn J. D. (2006). Automated antenna design with evolutionary algorithms // https://doi.org/10.2514/6.2006-7242

3017

Robinson A. (2019). Sketch2code: Generating a website from a paper mockup // https://arxiv.org/abs/1905.13750

3018

Dosovitskiy A., Springenberg J. T., Tatarchenko M., Brox T. (2014). Learning to Generate Chairs, Tables and Cars with Convolutional Networks // https://arxiv.org/abs/1411.5928

3019

Spilka D. (2018). What Does AI mean for Interior Design? / MIPIM World Blog, May 3, 2018 // https://blog.mipimworld.com/innovation/ai-artificial-intelligence-mean-interior-design/

3020

Злобин А. (2020). Студия Лебедева больше года выдавала искусственный интеллект за реального дизайнера / Forbes, 26.06.2020 // https://www.forbes.ru/newsroom/tehnologii/403795-studiya-lebedeva-bolshe-goda-vydavala-iskusstvennyy-intellekt-za-realnogo

3021

Jin H., Song Q., Hu X. (2018). Auto-Keras: An Efficient Neural Architecture Search System // https://arxiv.org/abs/1806.10282

3022

Zoph B., Le Q. V. (2016). Neural Architecture Search with Reinforcement Learning // https://arxiv.org/abs/1611.01578

3023

Kaiser L., Gomez A. N., Shazeer N., Vaswani A., Parmar N., Jones L., Uszkoreit J. (2017). One Model To Learn Them All // https://arxiv.org/abs/1706.05137

3024

Howard A., Sandler M., Chu G., Chen L.-C., Chen B., Tan M., Wang W., Zhu Y., Pang R., Vasudevan V., Le Q. V., Adam H. (2019). Searching for MobileNetV3 // https://arxiv.org/abs/1905.02244v5

3025

Xiong Y., Liu H., Gupta S., Akin B., Bender G., Kindermans P.-J., Tan M., Singh V., Chen B. (2020). MobileDets: Searching for Object Detection Architectures for Mobile Accelerators // https://arxiv.org/abs/2004.14525v2

3026

Ahmad W. U., Chakraborty S., Ray B., Chang K.-W. (2021). Unified Pre-training for Program Understanding and Generation // https://arxiv.org/abs/2103.06333

3027

Lewis M., Liu Y., Goyal N., Ghazvininejad M., Mohamed A., Levy O., Stoyanov V., Zettlemoyer L. (2019). BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension // https://arxiv.org/abs/1910.13461

3028

Feng Z., Guo D., Tang D., Duan N., Feng X., Gong M., Shou L., Qin B., Liu T., Jiang D., Zhou M. (2020). CodeBERT: A Pre-Trained Model for Programming and Natural Languages // https://arxiv.org/abs/2002.08155

3029

Svyatkovskiy A., Deng S. K., Fu S., Sundaresan N. (2020). IntelliCode Compose: Code Generation Using Transformer // https://arxiv.org/abs/2005.08025

3030

Alon U., Zilberstein M., Levy O., Yahav E. (2018). code2vec: Learning Distributed Representations of Code // https://arxiv.org/abs/1803.09473

3031

kite. Code Faster. Stay in Flow // https://www.kite.com/

3032

TabNine. Code faster with AI completions // https://www.tabnine.com/

3033

Copilot. Your AI pair programmer // https://copilot.github.com/

3034

Li Y., Choi D., Chung J., Kushman N., Schrittwieser J., Leblond R., Eccles T., Keeling J., Gimeno F., Lago A. D., Hubert T., Choy P., de Masson d’Autume C., Babuschkin I., Chen X., Huang P.-S., Welbl J., Gowal S., Cherepanov A., Molloy J., Mankowitz D. J., Robson E. S., Kohli P., de Freitas N., Kavukcuoglu K., Vinyals O. (2022). Competition-Level Code Generation with AlphaCode // https://storage.googleapis.com/deepmind-media/AlphaCode/competition_level_code_generation_with_alphacode.pdf

3035

Perez L., Ottens L., Viswanathan S. (2021). Automatic Code Generation using Pre-Trained Language Models // https://arxiv.org/abs/2102.10535

3036

Langston J. (2021). From conversation to code: Microsoft introduces its first product features powered by GPT-3 / Microsoft/The AI Blog, May 25, 2021 // https://blogs.microsoft.com/ai/from-conversation-to-code-microsoft-introduces-its-first-product-features-powered-by-gpt-3/

3037

Hasan M., Mehrab K. S., Ahmad W. U., Shahriyar R. (2021). Text2App: A Framework for Creating Android Apps from Text Descriptions // https://arxiv.org/abs/2104.08301

3038

Lin G., Wen S., Han Q.-L., Zhang J., Xiang Y. (2020). Software Vulnerability Detection Using Deep Neural Networks: A Survey / Proceedings of the IEEE, Vol. 108, Iss. 10, pp. 1825—1848 // https://doi.org/10.1109/JPROC.2020.2993293

3039

Wu J. (2021). Literature review on vulnerability detection using NLP technology // https://arxiv.org/abs/2104.11230

3040

Ziems N., Wu S. (2021). Security Vulnerability Detection Using Deep Learning Natural Language Processing // https://arxiv.org/abs/2105.02388

3041

Fried D., Aghajanyan A., Lin J., Wang S., Wallace E., Shi F., Zhong R., Yih W.-T., Zettlemoyer L., Lewis M. (2022). InCoder: A Generative Model for Code Infilling and Synthesis // https://arxiv.org/abs/2204.05999

3042

Nijkamp E., Pang B., Hayashi H., Tu L., Wang H., Zhou Y., Savarese S., Xiong C. (2022). CodeGen: An Open Large Language Model for Code with Multi-Turn Program Synthesis // https://arxiv.org/abs/2203.13474

3043

Allal L. B., Li R., Kocetkov D., Mou C., Akiki C., Ferrandis C. M., Muennighoff N., Mishra M., Gu A., Dey M., Umapathi L. K., Anderson C. J., Zi Y., Poirier J. L., Schoelkopf H., Troshin S., Abulkhanov D., Romero M., Lappert M., Toni F. D., de Río B. G., Liu Q., Bose S., Bhattacharyya U., Zhuo T. Y., Yu I., Villegas P., Zocca M., Mangrulkar S., Lansky D., Nguyen H., Contractor D., Villa L., Li J., Bahdanau D., Jernite Y., Hughes S., Fried D., Guha A., de Vries H., von Werra L. (2023). SantaCoder: don't reach for the stars! // https://arxiv.org/abs/2301.03988

3044

Li R., Allal L. B., Zi Y., Muennighoff N., Kocetkov D., Mou C., Marone M., Akiki C., Li J., Chim J., Liu Q., Zheltonozhskii E., Zhuo T. Y., Wang T., Dehaene O., Davaadorj M., Lamy-Poirier J., Monteiro J., Shliazhko O., Gontier N., Meade N., Zebaze A., Yee M., Umapathi L. K., Zhu J., Lipkin B., Oblokulov M., Wang Z., Murthy R., Stillerman J., Patel S.

Перейти на страницу:
Комментарии (0)