`
Читать книги » Книги » Компьютеры и Интернет » Прочая околокомпьютерная литература » Охота на электроовец. Большая книга искусственного интеллекта - Сергей Сергеевич Марков

Охота на электроовец. Большая книга искусственного интеллекта - Сергей Сергеевич Марков

Перейти на страницу:
C., Zhou J. (2023). Qwen-VL: A Frontier Large Vision-Language Model with Versatile Abilities // https://arxiv.org/abs/2308.12966

2991

Huang S., Dong L., Wang W., Hao Y., Singhal S., Ma S., Lv T., Cui L., Mohammed O. K., Patra B., Liu Q., Aggarwal K., Chi Z., Bjorck J., Chaudhary V., Som S., Song X., Wei F. (2023). Language Is Not All You Need: Aligning Perception with Language Models // https://arxiv.org/abs/2302.14045

2992

Peng Z., Wang W., Dong L., Hao Y., Huang S., Ma S., Wei F. (2023). Kosmos-2: Grounding Multimodal Large Language Models to the World // https://arxiv.org/abs/2306.14824

2993

Jaegle A., Gimeno F., Brock A., Zisserman A., Vinyals O., Carreira J. (2021). Perceiver: General Perception with Iterative Attention // https://arxiv.org/abs/2103.03206

2994

Carreira J., Koppula S., Zoran D., Recasens A., Ionescu C., Henaff O., Shelhamer E., Arandjelovic R., Botvinick M., Vinyals O., Simonyan K., Zisserman A., Jaegle A. (2022). Hierarchical Perceiver // https://arxiv.org/abs/2202.10890

2995

Mak K.-R., Pichika M. R. (2019). Artificial intelligence in drug development: present status and future prospects / Drug Discovery Today, Vol. 24, Iss. 3, March 2019, pp. 773—780 // https://doi.org/10.1016/j.drudis.2018.11.014

2996

Fleming N. (2018). How artificial intelligence is changing drug discovery / Nature, Vol. 557, S55-S57 (2018) // https://doi.org/10.1038/d41586-018-05267-x

2997

Grand G. (2020). Training Transformers for Practical Drug Discovery with Tensor2Tensor / Reverie Labs Engineering Blog, Apr 20, 2020 // https://blog.reverielabs.com/transformers-for-drug-discovery/

2998

Artificial Intelligence (AI) in Drug Discovery Market (2019). Report Code: HIT 7445 / MarketsAndMarkets, Nov 2019 // https://www.marketsandmarkets.com/Market-Reports/ai-in-drug-discovery-market-151193446.html

2999

Oganov A. R., Glass C. W. (2006). Crystal structure prediction using ab initio evolutionary techniques: principles and applications / Journal of Chemical Physics, Vol. 124, p. 244704 // https://doi.org/10.1063/1.2210932

3000

USPEX Computational Materials Discovery // https://uspex-team.org/

3001

Oganov A. R., Chen J., Gatti C., Ma Y.-Z., Ma Y.-M., Glass C. W., Liu Z., Yu T., Kurakevych O. O., Solozhenko V. L. (2009). Ionic high-pressure form of elemental boron / Nature, Vol. 457, pp. 863—867 // https://doi.org/10.1038/nature07736

3002

Ma Y., Eremets M. I., Oganov A. R., Xie Y., Trojan I., Medvedev S., Lyakhov A. O., Valle M., Prakapenka V. (2009). Transparent dense sodium / Nature, Vol. 458, pp. 182—185 // https://doi.org/10.1038/nature07786

3003

Li Q., Ma Y., Oganov A. R., Wang H., Wang H., Xu Y., Cui T., Mao H.-K., Zou G. (2009). Superhard monoclinic polymorph of carbon / Physical Review Letters, Vol. 102, p. 175506 // https://doi.org/10.1103/physrevlett.102.175506

3004

Dong X., Oganov A. R., Goncharov A. F., Stavrou E., Lobanov S., Saleh G., Qian G. R., Zhu Q., Gatti C., Deringer V. L., Dronskowski R., Zhou X. F., Prakapenka V. B., Konôpková Z., Popov I. A., Boldyrev A. I., Wang H. T. (2017). A stable compound of helium and sodium at high pressure / Nature Chemistry, Vol. 9, pp. 440—445 // https://doi.org/10.1038/nchem.2716

3005

Zhang W. W., Oganov A. R., Goncharov A. F., Zhu Q., Boulfelfel S. E., Lyakhov A. O., Stavrou E., Somayazulu M., Prakapenka V. B., Konopkova Z. (2013). Unexpected stoichiometries of stable sodium chlorides / Science, Vol. 342, pp. 1502—1505 // https://doi.org/10.1126/science.1244989

3006

Callaway E. (2020). ‘It will change everything’: DeepMind’s AI makes gigantic leap in solving protein structures / Nature, Vol. 588, pp. 203—204 // https://doi.org/10.1038/d41586-020-03348-4

3007

Baek M., DiMaio F., Anishchenko I., Dauparas J., Ovchinnikov S., Lee G. R., Wang J., Cong Q., Kinch L. N., Schaeffer R. D., Millán C., Park H., Adams C., Glassman C. R., DeGiovanni A., Pereira J. H., Rodrigues A. V., van Dijk A. A., Ebrecht A. C., Opperman D. J., Sagmeister T., Buhlheller C., Pavkov-Keller T., Rathinaswamy M. K., Dalwadi U., Yip C. K., Burke J. E., Garcia K. C., Grishin N. V., Adams P. D., Read R. J., Baker D. (2021). Accurate prediction of protein structures and interactions using a 3-track network // https://www.biorxiv.org/content/10.1101/2021.06.14.448402v1

3008

Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., Bridgland A., Meyer C., Kohl S. A. A., Ballard A. J., Cowie A., Romera-Paredes B., Nikolov S., Jain R., Hassabis D. (2021). Highly accurate protein structure prediction with AlphaFold / Nature, 15 July 2021 // https://doi.org/10.1038/s41586-021-03819-2

3009

Ford C. T. (2021). Protein Structure Prediction of the new B.1.1.529 SARS-CoV-2 Spike Variant with AlphaFold2 / Colby T. Ford, PhD, Nov 27, 2021 // https://colbyford.medium.com/protein-structure-prediction-of-b-1-1-529-sars-cov-2-spike-variant-with-alphafold2-39c5bf9cf9ed

3010

Ford C. T., Machado D. J., Janies D. A. (2021). Predictions of the SARS-CoV-2 Omicron Variant (B.1.1.529) Spike Protein Receptor-Binding Domain Structure and Neutralizing Antibody Interactions // https://doi.org/10.1101/2021.12.03.471024

3011

Simonite T. (2022). This AI Software Nearly Predicted Omicron’s Tricky Structure / Wired, 01.10.2022 // https://www.wired.com/story/ai-software-nearly-predicted-omicrons-tricky-structure/

3012

Hassabis D. (2022). AlphaFold reveals the structure of the protein universe / DeepMind blog, July 28, 2022 // https://www.deepmind.com/blog/alphafold-reveals-the-structure-of-the-protein-universe

3013

Jiang J. W., Songhori E., Wang S., Lee Y.-J., Johnson E., Pathak O., Nazi A., Pak J., Tong A., Srinivasa K., Hang W., Tuncer E., Le Q. V., Laudon J., Ho R., Carpenter R., Dean J. (2021). A graph placement methodology for fast chip design / Nature, Vol. 594, pp. 207—212 // https://doi.org/10.1038/s41586-021-03544-w

3014

Gershgorn D. (2017). DeepMind has a bigger plan for its newest Go-playing AI / Quartz, October 18, 2017 // https://qz.com/1105509/deepminds-new-alphago-zero-artificial-intelligence-is-ready-for-more-than-board-games/

3015

Ren F., Ward L., Williams T., Laws K. J., Wolverton C.,

Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Охота на электроовец. Большая книга искусственного интеллекта - Сергей Сергеевич Марков, относящееся к жанру Прочая околокомпьютерная литература / Программирование. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)