Читать книги » Книги » Компьютеры и Интернет » Прочая околокомпьютерная литература » Охота на электроовец. Большая книга искусственного интеллекта - Сергей Сергеевич Марков

Охота на электроовец. Большая книга искусственного интеллекта - Сергей Сергеевич Марков

Читать книгу Охота на электроовец. Большая книга искусственного интеллекта - Сергей Сергеевич Марков, Сергей Сергеевич Марков . Жанр: Прочая околокомпьютерная литература / Программирование.
Охота на электроовец. Большая книга искусственного интеллекта - Сергей Сергеевич Марков
Название: Охота на электроовец. Большая книга искусственного интеллекта
Дата добавления: 23 январь 2025
Количество просмотров: 17
(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
Читать онлайн

Охота на электроовец. Большая книга искусственного интеллекта читать книгу онлайн

Охота на электроовец. Большая книга искусственного интеллекта - читать онлайн , автор Сергей Сергеевич Марков

Новый этап в области компьютерных технологий часто называют очередной «весной искусственного интеллекта». Её начало обычно отсчитывают с момента появления нейронной сети, сегодня известной под названием AlexNet, успех которой в распознавании зрительных образов возвестил о начале «революции глубокого обучения». В результате этой революции машинам удалось превзойти человеческий уровень при решении множества задач. Сегодня уже мало кого удивляют победы машин над сильнейшими игроками в го, создание ими музыки и картин, предсказание нейронными сетями пространственной структуры белков и другие вещи, которые десять лет назад мы посчитали бы чудесами. Алгоритмы искусственного интеллекта (ИИ) быстро вошли в нашу жизнь и стали её неотъемлемой частью. Например, каждый раз, когда вы делаете фотографию при помощи смартфона, её обработку выполняет нейронная сеть.
На смену весне искусственного интеллекта приходит лето. Эта книга рассказывает о том, какие события в истории науки привели к началу этого лета, о современных технологиях ИИ и их возможностях, а также пытается приоткрыть завесу, скрывающую от нас мир ближайшего будущего.
Мифы и заблуждения об искусственном интеллекте, страхи, насущные проблемы, перспективные направления исследований — обо всём этом вы узнаете из «Большой книги искусственного интеллекта».

Перейти на страницу:
C., Zhou J. (2023). Qwen-VL: A Frontier Large Vision-Language Model with Versatile Abilities // https://arxiv.org/abs/2308.12966

2991

Huang S., Dong L., Wang W., Hao Y., Singhal S., Ma S., Lv T., Cui L., Mohammed O. K., Patra B., Liu Q., Aggarwal K., Chi Z., Bjorck J., Chaudhary V., Som S., Song X., Wei F. (2023). Language Is Not All You Need: Aligning Perception with Language Models // https://arxiv.org/abs/2302.14045

2992

Peng Z., Wang W., Dong L., Hao Y., Huang S., Ma S., Wei F. (2023). Kosmos-2: Grounding Multimodal Large Language Models to the World // https://arxiv.org/abs/2306.14824

2993

Jaegle A., Gimeno F., Brock A., Zisserman A., Vinyals O., Carreira J. (2021). Perceiver: General Perception with Iterative Attention // https://arxiv.org/abs/2103.03206

2994

Carreira J., Koppula S., Zoran D., Recasens A., Ionescu C., Henaff O., Shelhamer E., Arandjelovic R., Botvinick M., Vinyals O., Simonyan K., Zisserman A., Jaegle A. (2022). Hierarchical Perceiver // https://arxiv.org/abs/2202.10890

2995

Mak K.-R., Pichika M. R. (2019). Artificial intelligence in drug development: present status and future prospects / Drug Discovery Today, Vol. 24, Iss. 3, March 2019, pp. 773—780 // https://doi.org/10.1016/j.drudis.2018.11.014

2996

Fleming N. (2018). How artificial intelligence is changing drug discovery / Nature, Vol. 557, S55-S57 (2018) // https://doi.org/10.1038/d41586-018-05267-x

2997

Grand G. (2020). Training Transformers for Practical Drug Discovery with Tensor2Tensor / Reverie Labs Engineering Blog, Apr 20, 2020 // https://blog.reverielabs.com/transformers-for-drug-discovery/

2998

Artificial Intelligence (AI) in Drug Discovery Market (2019). Report Code: HIT 7445 / MarketsAndMarkets, Nov 2019 // https://www.marketsandmarkets.com/Market-Reports/ai-in-drug-discovery-market-151193446.html

2999

Oganov A. R., Glass C. W. (2006). Crystal structure prediction using ab initio evolutionary techniques: principles and applications / Journal of Chemical Physics, Vol. 124, p. 244704 // https://doi.org/10.1063/1.2210932

3000

USPEX Computational Materials Discovery // https://uspex-team.org/

3001

Oganov A. R., Chen J., Gatti C., Ma Y.-Z., Ma Y.-M., Glass C. W., Liu Z., Yu T., Kurakevych O. O., Solozhenko V. L. (2009). Ionic high-pressure form of elemental boron / Nature, Vol. 457, pp. 863—867 // https://doi.org/10.1038/nature07736

3002

Ma Y., Eremets M. I., Oganov A. R., Xie Y., Trojan I., Medvedev S., Lyakhov A. O., Valle M., Prakapenka V. (2009). Transparent dense sodium / Nature, Vol. 458, pp. 182—185 // https://doi.org/10.1038/nature07786

3003

Li Q., Ma Y., Oganov A. R., Wang H., Wang H., Xu Y., Cui T., Mao H.-K., Zou G. (2009). Superhard monoclinic polymorph of carbon / Physical Review Letters, Vol. 102, p. 175506 // https://doi.org/10.1103/physrevlett.102.175506

3004

Dong X., Oganov A. R., Goncharov A. F., Stavrou E., Lobanov S., Saleh G., Qian G. R., Zhu Q., Gatti C., Deringer V. L., Dronskowski R., Zhou X. F., Prakapenka V. B., Konôpková Z., Popov I. A., Boldyrev A. I., Wang H. T. (2017). A stable compound of helium and sodium at high pressure / Nature Chemistry, Vol. 9, pp. 440—445 // https://doi.org/10.1038/nchem.2716

3005

Zhang W. W., Oganov A. R., Goncharov A. F., Zhu Q., Boulfelfel S. E., Lyakhov A. O., Stavrou E., Somayazulu M., Prakapenka V. B., Konopkova Z. (2013). Unexpected stoichiometries of stable sodium chlorides / Science, Vol. 342, pp. 1502—1505 // https://doi.org/10.1126/science.1244989

3006

Callaway E. (2020). ‘It will change everything’: DeepMind’s AI makes gigantic leap in solving protein structures / Nature, Vol. 588, pp. 203—204 // https://doi.org/10.1038/d41586-020-03348-4

3007

Baek M., DiMaio F., Anishchenko I., Dauparas J., Ovchinnikov S., Lee G. R., Wang J., Cong Q., Kinch L. N., Schaeffer R. D., Millán C., Park H., Adams C., Glassman C. R., DeGiovanni A., Pereira J. H., Rodrigues A. V., van Dijk A. A., Ebrecht A. C., Opperman D. J., Sagmeister T., Buhlheller C., Pavkov-Keller T., Rathinaswamy M. K., Dalwadi U., Yip C. K., Burke J. E., Garcia K. C., Grishin N. V., Adams P. D., Read R. J., Baker D. (2021). Accurate prediction of protein structures and interactions using a 3-track network // https://www.biorxiv.org/content/10.1101/2021.06.14.448402v1

3008

Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., Bridgland A., Meyer C., Kohl S. A. A., Ballard A. J., Cowie A., Romera-Paredes B., Nikolov S., Jain R., Hassabis D. (2021). Highly accurate protein structure prediction with AlphaFold / Nature, 15 July 2021 // https://doi.org/10.1038/s41586-021-03819-2

3009

Ford C. T. (2021). Protein Structure Prediction of the new B.1.1.529 SARS-CoV-2 Spike Variant with AlphaFold2 / Colby T. Ford, PhD, Nov 27, 2021 // https://colbyford.medium.com/protein-structure-prediction-of-b-1-1-529-sars-cov-2-spike-variant-with-alphafold2-39c5bf9cf9ed

3010

Ford C. T., Machado D. J., Janies D. A. (2021). Predictions of the SARS-CoV-2 Omicron Variant (B.1.1.529) Spike Protein Receptor-Binding Domain Structure and Neutralizing Antibody Interactions // https://doi.org/10.1101/2021.12.03.471024

3011

Simonite T. (2022). This AI Software Nearly Predicted Omicron’s Tricky Structure / Wired, 01.10.2022 // https://www.wired.com/story/ai-software-nearly-predicted-omicrons-tricky-structure/

3012

Hassabis D. (2022). AlphaFold reveals the structure of the protein universe / DeepMind blog, July 28, 2022 // https://www.deepmind.com/blog/alphafold-reveals-the-structure-of-the-protein-universe

3013

Jiang J. W., Songhori E., Wang S., Lee Y.-J., Johnson E., Pathak O., Nazi A., Pak J., Tong A., Srinivasa K., Hang W., Tuncer E., Le Q. V., Laudon J., Ho R., Carpenter R., Dean J. (2021). A graph placement methodology for fast chip design / Nature, Vol. 594, pp. 207—212 // https://doi.org/10.1038/s41586-021-03544-w

3014

Gershgorn D. (2017). DeepMind has a bigger plan for its newest Go-playing AI / Quartz, October 18, 2017 // https://qz.com/1105509/deepminds-new-alphago-zero-artificial-intelligence-is-ready-for-more-than-board-games/

3015

Ren F., Ward L., Williams T., Laws K. J., Wolverton C.,

Перейти на страницу:
Комментарии (0)