`
Читать книги » Книги » Компьютеры и Интернет » Базы данных » Коллектив Авторов - Базы данных: конспект лекций

Коллектив Авторов - Базы данных: конспект лекций

1 ... 3 4 5 6 7 ... 35 ВПЕРЕД
Перейти на страницу:

2. Унарная операция проекции

Еще одна стандартная унарная операция, которую мы изучим, – это операция проекции. Операция проекции – это операция выбора столбцов из таблицы, представляющей отношение, по какому-либо признаку. А именно машина выбирает те атрибуты (т. е. буквально те столбцы) исходного отношения-операнда, которые были указаны в проекции.

Оператор проекции обозначается [S'] или π<S'>. Здесь S' – подсхема исходной схемы отношения S, т. е. ее некоторые столбцы. Что это означает? Это означает, что у S’ атрибутов меньше, чем у S, потому что в S' остались только те из них, для которых выполнилось условие проекции. А в таблице, представляющей отношение r(S' ), строк столько же, сколько их у таблицы r(S), а столбцов – меньше, так как остались только соответствующие оставшимся атрибутам. Таким образом, оператор проекции π< S'> применительно к отношению r(S) дает в результате новое отношение с другой схемой отношения r(S' ), состоящее из проекций t(S) [S' ] кортежей исходного отношения. Как определяются эти проекции кортежей? Проекция любого кортежа t(S) исходного отношения r(S) на подсхему S' определяется следующей формулой:

t(S) [S’] = {t(a)|adef(t) ∩ S’}, S' ⊆S.

Важно заметить, что дубликаты кортежей из результата исключаются, т. е. в таблице, представляющей новое, результирующее отношение повторяющихся строк не будет.

С учетом всего вышесказанного, операция проекции в терминах систем управления базами данных будет выглядеть следующим образом:

π<S'>r(S) ≡ π<S’>rr(S) [S’] ≡ r [S' ] = {t(S) [S’] | tr };

Рассмотрим пример, иллюстрирующий принцип работы операции выборки.

Пусть дано отношение «Сессия» и схема этого отношения:

S: Сессия (№ зачетной книжки, Фамилия, Предмет, Оценка);

Нас будут интересовать только два атрибута из этой схемы, а именно «№ зачетной книжки» и «Фамилия» студента, поэтому подсхема S' будет выглядеть следующим образом:

S' : (№ зачетной книжки, Фамилия).

Нужно исходное отношение r(S) спроецировать на подсхему S'.

Далее, пусть нам дан кортеж t0(S) из исходного отношения:

t0(S) ∈ r(S): {(№ зачетной книжки: 100), (Фамилия: ‘Иванов’), (Предмет: ‘Базы данных’), (Оценка: 5)};

Значит, проекция этого кортежа на данную подсхему S' будет выглядеть следующим образом:

t0(S) S': {(№ зачетной книжки: 100), (Фамилия: ‘Иванов’)};

Если говорить об операции проекции в терминах таблиц, то проекция Сессия [№ зачетной книжки, Фамилия] исходного отношения – это таблица Сессия, из которой вычеркнуты все столбцы, кроме двух: № зачетной книжки и Фамилия. Кроме того, все дублирующиеся строки также удалены.

3. Унарная операция переименования

И последняя унарная операция, которую мы рассмотрим, – это операция переименования атрибутов. Если говорить об отношении как о таблице, то операция переименования нужна для того, чтобы поменять названия всех или некоторых столбцов.

Оператор переименования выглядит следующим образом: ρ<φ>, здесь φ — функция переименования.

Эта функция устанавливает взаимно-однозначное соответствие между именами атрибутов схем S и Ŝ, где соответственно S — схема исходного отношения, а Ŝ схема отношения с переименованными атрибутами. Таким образом, оператор ρ<φ> в применении к отношению r(S) дает новое отношение со схемой Ŝ, состоящее из кортежей исходного отношения только с переименованными атрибутами.

Запишем операцию переименования атрибутов в терминах систем управления базами данных:

ρ<φ> r(S) ≡ ρ<φ>r = {ρ<φ> t(S)| tr};

Приведем пример использования этой операции:

Рассмотрим уже знакомое нам отношение Сессия, со схемой:

S: Сессия (№ зачетной книжки, Фамилия, Предмет, Оценка);

Введем новую схему отношения Ŝ, с другими именами атрибутов, которые мы бы хотели видеть вместо имеющихся:

Ŝ : (№ ЗК, Фамилия, Предмет, Балл);

Например, заказчик базы данных захотел в вашем готовом отношении видеть другие названия. Чтобы воплотить в жизнь этот заказ, необходимо спроектировать следующую функцию переименования:

φ : (№ зачетной книжки, Фамилия, Предмет, Оценка) → (№ ЗК, Фамилия, Предмет, Балл);

Фактически, требуется поменять имя только у двух атрибутов, поэтому законно будет записать следующую функцию переименования вместо имеющейся:

φ : (№ зачетной книжки, Оценка) (№ ЗК, Балл);

Далее, пусть дан также уже знакомый нам кортеж принадлежащий отношению Сессия:

t0(S) ∈ r(S): {(№ зачетной книжки: 100), (Фамилия: ‘Иванов’), (Предмет: ‘Базы данных’), (Оценка: 5)};

Применим оператор переименования к этому кортежу:

ρ<φ> t0(S): {(№ ЗК: 100), (Фамилия: ‘Иванов’), (Предмет: ‘Базы данных’), (Балл: 5)};

Итак, это один из кортежей нашего отношения, у которого переименовали атрибуты.

В табличных терминах отношение

ρ < № зачетной книжки, Оценка «№ ЗК, Балл > Сессия —

это новая таблица, полученная из таблицы отношения «Сессия», переименованием указанных атрибутов.

4. Свойства унарных операций

У унарных операций, как и у любых других, есть определенные свойства. Рассмотрим наиболее важные из них.

Первым свойством унарных операций выборки, проекции и переименования является свойство, характеризующее соотношение мощностей отношений. (Напомним, что мощность – это количество кортежей в том или ином отношении.) Понятно, что здесь рассматривается соответственно отношение исходное и отношение, полученное в результате применения той или иной операции.

Заметим, что все свойства унарных операций следуют непосредственно из их определений, поэтому их можно легко объяснить и даже при желании вывести самостоятельно.

Итак:

1) соотношение мощностей:

а) для операции выборки: | σ<P>r |≤ |r|;

б) для операции проекции: | r[S'] | ≤ |r|;

в) для операции переименования: | ρ<φ>r | = |r|;

Итого, мы видим, что для двух операторов, а именно для оператора выборки и оператора проекции, мощность исходных отношений – операндов больше, чем мощность отношений, получаемых из исходных применением соответствующих операций. Это происходит потому, что при выборе, сопутствующему действию этих двух операций выборки и проекции, происходит исключение некоторых строк или столбцов, не удовлетворивших условиям выбора. В том случае, когда условиям удовлетворяют все строки или столбцы, уменьшения мощности (т. е. количества кортежей) не происходит, поэтому в формулах неравенство нестрогое.

В случае же операции переименования, мощность отношения не изменяется, за счет того, что при смене имен никакие кортежи из отношения не исключаются;

2) свойство идемпотентности:

а) для операции выборки: σ<P> σ<P>r = σ<P>;

б) для операции проекции: r [S’] [S’] = r [S'];

в) для операции переименования в общем случае свойство идемпотентности неприменимо.

Это свойство означает, что двойное последовательное применение одного и того же оператора к какому-либо отношению равносильно его однократному применению.

Для операции переименования атрибутов отношения, вообще говоря, это свойство может быть применено, но обязательно со специальными оговорками и условиями.

Свойство идемпотентности очень часто используется для упрощения вида выражения и приведения его к более экономичному, актуальному виду.

1 ... 3 4 5 6 7 ... 35 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Коллектив Авторов - Базы данных: конспект лекций, относящееся к жанру Базы данных. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)