`
Читать книги » Книги » Документальные книги » Биографии и Мемуары » Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра

Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра

1 ... 38 39 40 41 42 ... 114 ВПЕРЕД
Перейти на страницу:

В Душанбе я встретился с Самуилом Борисовичем Морочником (1910­1981), он был философом, а его жена Мира Марковна Явич - специалистом по персидской и таджикской литературе. М.М.Явич подготовила несколько сборников русских переводов четверостиший Хайяма, а С.Б.Морочник написал вступительные статьи к этим сборникам, а затем написал книгу о философских взглядах Хайяма.

Когда я стал изучать научное творчество Хайяма, я установил контакт с Морочником, и мы написали книгу "Омар Хайям - поэт, мыслитель, ученый" В приложении к этой книге были помещены мои переводы философских трактатов Хайяма. Книга вышла в Душанбе в 1957 г.

Морочник познакомил меня с таджикским академиком А.М.Богоутдиновым и психологом М.Г.Ярошевским. С Ярошевским я впоследствии работал в Москве. В Душанбе я познакомился с Гадойбоем Собировым и другими молодыми таджикскими историками математики.

Я посетил также Самарканд, Бухару и Хиву.

Украина и Молдавия

Летом 1959 г. я совершил поездку по Украине и Молдавии. В Киеве я посетил заведующего кафедрой геометрии Киевского университета Бориса Яковлевича Букреева, которому в том году исполнялось 100 лет. "Переводчиком" при нашей беседе была его 75-летняя дочь. Борис Яковлевич поделился со мной воспоминаниями о своей молодости.

Во Львове я встретился с бакинским математиком Меджидом Латифовичем Расуловым и его учителем Я.Б.Лопатинским.

Я с большим интересом осмотрел Львов, очень красивый город, входивший до 1918 г. в состав Австро-Венгрии, а в 1918 -1939 гг. в состав Польши.

В Кишиневе, столице Молдавской республики, я беседовал с учеником А.Д.Александрова Александром Михайловичем Заморзаевым -Орлеанским, впоследствии создавшим большую школу кристаллографов.

Я посетил также Черновцы, осмотрел этот город, входивший до 1918 г в состав Австро-Венгрии, а в 1918 - 1940 гг. в состав Румынии. Я сделал в университете доклад о своих работах.

В 1962 г. в Киеве состоялась 1-я Всесоюзная геометрическая конференция, организованная новым заведующим кафедры геометрии университета Н.И.Кованцовым. В конференции участвовали многие студенты и аспиранты Коломенского пединстута.

Вырожденные неевклидовы геометрии

После смерти Д.И.Перепелкина я руководил его аспиранткой Ираидой Железиной. Тема ее диссертации была подсказана Перепелкину И.М.Ягломом, работавшим в Орехово-Зуевском пединституте на кафедре, которой заведовала жена Перепелкина Анастасия Николаевна и часто бывавшим в их доме.

И.М.Яглом много раз советовал мне изучать вырожденные неевклидовы геометрии. Он убедил Перепелкина в важности статьи Дункана Соммервилля "Классификация проективных метрик". Перепелкин поручил Железиной изучение геометрий, кратко описанных в статье Соммервилля, и перевел для нее эту статью на русский язык.

После смерти Перепелкина руководство диссертацией Железиной было поручено мне. Мы с Железиной ограничились рассмотрением трехмерных пространств, в которых роль абсолюта играет пара вещественных или мнимо сопряженных плоскостей и пара вещественных или мнимо сопряженных точек на линии их пересечения. В своей диссертации Железина показала, что многообразия прямых линий этих пространств допускают интерпретации в виде комплексной и двойной евклидовых плоскостей и в виде двойной псевдоевклидовой плоскости. Эти интерпретации можно получить предельными переходами из интерпретаций А. П. Котельникова.

Железина защитила диссертацию в МГПИ и много лет работала доцентом в разных институтах. Она умерла в 1996 г.

На III съезде математиков СССР после моего доклада об интерпретациях геометрии Лобачевского, ко мне подошла аспирантка из Кирова Тамара Чахленкова и сказала, что тема ее диссертации - как раз интерпретации геометрии Лобачевского, и спросила мое мнение о диссертабельности этой темы. Я ответил, что написать диссертацию по этой теме совершенно невозможно. Тогда она попросила меня дать ей другую тему и быть ее руководителем. Я ответил согласием, и, вернувшись в Киров, Чахленкова провела через Ученый совет своего института решение о замене ее руководителя, и приехала ко мне в Москву. Я поручил ей изучение n- мерных вырожденных неевклидовых геометрий, частными случаями которых при n = 3 являются геометрии, изучавшиеся Железиной. Абсолюты этих геометрий состоят из вещественного или мнимого конуса второго порядка с плоской вершиной и из вещественной или мнимой квадрики в этой плоской вершине. Если плоская вершина конуса - гиперплоскость, то пространство - евклидово или псевдоевклидово вместе с его абсолютом, а если вершина конуса - точка, то пространство - коевклидово или копсевдоевклидово, т.е.соответствует евклидову или псевдоевклидову по принципу двойственности проективной геометрии.

Позже обнаружилось, что пространство, изучавшееся Железиной в случае мнимого абсолюта определил в 1911 г. Бляшке и назвал его "квазиэллиптическим". Поэтому пространства Чахленковой называются "квазиэллиптическими" и "квазипсевдоэллиптическими".

Чахленкова защитила диссертацию в МГПИ, работала доцентом сначала в Мурманском, а затем в Тамбовском пединститутах.

В Черновцах я познакомился с преподавательницей университета Евгенией Ясинской, которая попросила дать ей тему научной работы. Я предложил ей изучить геометрию самых общих просранств, определенных Соммервиллем. Ясинская защитила кандидатскую диссертацию в МГПИ и много лет работала доцентон в Черновецком университете.

Мы с И.М.Ягломом написали обзорную статью "Проективные метрики" о вырожденных неевклидовых пространствах и использовали результаты диссертации Ясинской, которую включили в число авторов статьи. Статья была напечатана в "Успехах математических наук" в 1964 г.

Пространства, абсолюты которых состоят из гиперплоскости с евклидовой геометрией, совпадают с галилеевыми пространствами, определенными А.П.Котельниковым, а пространства, получаемые из галлилеевых заменой евклидовой геометрии псевдоевклидовой, называются псевдогаллилеевыми. Если заменить в определении галлилеевых и псевдогаллилеевых пространств евклидовы и псевдоевклидовы геометрии коевклидовыми или копсевдоевклидовыми геометриями, мы получим изотропные и псевдоизотропные пространства. Галлилеева плоскость совпадает с изотропной плоскостью, абсолют этой плоскости - прямая линия с одной точкой на ней. Упоминавшиеся выше циклы изотропной плоскости являются коническими сечениями, которые касаются прямой абсолюта в его точке.

4-мерное изотропное пространство образует геометрическую интерпретацию многообразия событий (точек в определенные моменты времени) классической механики Галлилея - Ньютона., этим объясняется термин "галлилеево пространство".

(adsbygoogle = window.adsbygoogle || []).push({});
1 ... 38 39 40 41 42 ... 114 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра, относящееся к жанру Биографии и Мемуары. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)