`
Читать книги » Книги » Старинная литература » Европейская старинная литература » Этимологии. Книги I–III: Семь свободных искусств - Исидор Севильский

Этимологии. Книги I–III: Семь свободных искусств - Исидор Севильский

1 ... 34 35 36 37 38 ... 113 ВПЕРЕД
Перейти на страницу:
[число] один, которое есть третья часть трех. Далее если сравнить V с IV, то оно имеет в себе четверку и еще [число] один, про которое говорят, что оно четвертая часть четверки. И тому подобное.

(8) Суперпартиентное (superpartiens)[475] число есть такое, которое заключает в себе всё меньшее число и сверх этого еще II или III, или IV, или V, или больше его частей. Как, например, если сравнить V с III, пятерка содержит в себе тройку и сверх этого еще II её части; если сравнить VII с IV, то оно содержит в себе IV и еще III его части; если сравнить IX с V, то оно содержит в себе V и еще IV его части.

(9) Субсуперпартиентное (subsuperpartiens)[476] число есть такое, которое заключается в числе суперпартиентном вместе с еще двумя или тремя, или многими своими частями. <Как,> например, III содержится в V с еще II своими частями, V — в IX с IV своими частями.

(10) Субсуперпартикулярное (supsuperparticularis)[477] число есть такое, которое заключается в большем (fortior) числе с еще одною своею частью — или половиною, или третьею, или четвертою, или пятою [и т. д.]. Как, например, II к III, III к IV, IV к V и так далее.

(11) Многократно суперпартикулярное (multiplex superparticularis)[478] число есть такое, которое, если сравнить его с меньшим по отношению к нему числом, заключает в себе все меньшее число многократно с еще одной его, [меньшего числа,] частью. Как, например, если сравнить V с II, то оно заключает в себе дважды II, [то есть] IV, и одну [вторую] его часть; если сравнить IX с IV, оно заключает в себе дважды IV, [то есть VIII], и одну [четвертую] его часть.

(12) <Многократно субсуперпартикулярное (submultiplex subsuperparticularis)[479] число есть такое, которое, если сравнить его с большим по отношению к нему числом, заключается в нем многократно с еще одною своею частью. Как, например, если сравнить II с V, оно заключается в нем дважды с еще одною [второю] своею частью.>

Многократно суперпартиентное (multiplex superpartionalis/superpartiens)[480] число есть такое, которое, если сравнить его с меньшим по отношению к нему числом, заключает его многократно с другими его частями. Как, например, если сравнить VIII с III, то оно заключает в себе дважды III и еще II его [третьи] части; если сравнить XIV с VI, то оно заключает внутри себя дважды VI с еще II его [шестыми] частями; <если сравнить XVI с VII, то оно содержит его [VII] дважды с еще II его [седьмыми] частями; если сравнить XXI с IX, то оно заключает в себе дважды IX с еще тремя его [девятыми] частями>.

(13) Многократно субсуперпартиентное[481] (submultiplex subsuperpartionalis/subsuperpartiens)[482] число есть такое, которое если сравнить его с большим по отношению к нему числом, заключается в нем многократно с другими своими частями, как, например, III к VIII — оно заключается [в восьмерке] дважды с II [третьими] своими частями; IV к XI — заключается дважды с III [четвертыми] своими частями.

Глава VII. О третьем разделении всех чисел

Числа бывают либо дискретными, либо непрерывными. Последние подразделяются так: линейные, поверхностные и телесные[483].

Дискретное (discretus) число есть такое, которое состоит из отдельных монад, как, например, III, IV, V, VI и так далее.

(2) Непрерывное (continens) число есть такое, которое состоит из связанных монад, как, например, [когда] тройку понимают в [протяженной] величине (magnitudo)[484], то есть [когда] говорят, что она содержится в линии или в пространстве (spatium), или в теле (solidus); также четверка и пятерка.

(3) Линейное (linealis) число есть такое, которое, начиная из монады [точки], рисуют в виде линии до бесконечности. Поэтому [буква] альфа используется для обозначения линий, ведь эта буква у греков обозначает [число] один.

(4) Поверхностное (superficialis) число есть такое, которое заключается не только в длине, но и в ширине, как треугольное, квадратное, пятиугольное и круглое число и так далее, которое всегда содержится на ровной поверхности, то есть на плоскости. Треугольное (trigonus) число есть такое:

Квадратное (quadratus) число[485] есть такое:

Пятиугольное (quinqueangulus) число есть такое:

(5) Циклическое (circularis) число[486] есть такое, которое, умножаясь подобным образом, с себя начинается и к себе возвращается, как пять раз по пять — XXV, вот так:

Телесное (solidus) число есть такое, которое заключается в длине, ширине и высоте, как [например] пирамиды (pyramides), поднимающиеся как пламя[487], вот так:

(6) Куб (cubus), подобный игральным костям, такой:

Сферы (sphaera), в которых есть повсюду равная округлость, такие:

А сферическое (sphaericus) число есть такое, которое, будучи умноженным циклическим числом, с себя начинается и к себе возвращается. [Например] пять раз по пять — XXV; если это круглое [число] умножить на себя, то получится сфера, то есть пять раз по XXV–CXXV.

Глава VIII. О различии арифметики, геометрии и музыки

Между арифметикою же, геометриею и музыкою есть различие, когда ищешь среднее[488]. Прежде всего, в арифметике[489] ты ищешь его так: складываешь крайние, делишь и получаешь половину. Например, сделай так, чтобы крайними были VI и XII; только сложишь, и они дадут XVIII; разделишь пополам и получишь [искомое среднее] IX. И это есть арифметическая пропорция (analogicum): чтобы на сколько единиц среднее [арифметическое] превосходило первое [число], на столько его превосходило крайнее. Ведь IX превосходит VI на три единицы, и на столько же его превосходит XII.

(2) При помощи же геометрии так ищешь [средние][490]: перемноженные крайние дают ту же [величину], что и перемноженные средние[491]. Например, перемноженные VI и XII дают семидесяти двойное [число], и столько же дают перемноженные [искомые] средние [числа] VIII и IX.

(3) При помощи музыки — так[492]: на какую часть [первого числа] среднее превосходит первое [число], на такую же часть [самого себя] крайнее [число] превосходит среднее. Например, VI и VIII; [восемь] превосходит [шесть] на две [шестых]

1 ... 34 35 36 37 38 ... 113 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Этимологии. Книги I–III: Семь свободных искусств - Исидор Севильский, относящееся к жанру Европейская старинная литература. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)