`
Читать книги » Книги » Старинная литература » Античная литература » Аналитики. Никомахова этика - Аристотель

Аналитики. Никомахова этика - Аристотель

1 ... 71 72 73 74 75 ... 227 ВПЕРЕД
Перейти на страницу:
и не то, что он есть. А [положение], что относительно каждой вещи [истинно] или утверждение, или отрицание, доказывается через невозможное, и это – не всегда как общее, а лишь насколько это достаточно; достаточно же – для рода. Говоря «для рода», я имею в виду род, относительно которого ведутся доказательства, как об этом уже было сказано раньше.

Все науки имеют между собой нечто общее через общие им начала. Общими же я называю начала, которыми пользуются для того, чтобы из них вести доказательства, а не то, относительно чего ведется доказательство, и не то, что доказывается. А диалектика имеет дело со всеми [науками]. И такой же была бы [наука], которая попыталась бы доказать как общее общие всем [начала], как, например, что относительно каждой вещи [истинно] или утверждение, или отрицание, или, что если равное отнять от равного, остается равное же, и тому подобное. Диалектика не имеет, однако, дела ни с чем-нибудь столь определенным, ни с каким-либо одним родом. Иначе она не прибегала бы к вопросам. Доказывающий же не ставит вопросов, ибо из противолежащих друг другу [положений] не доказывается одно и то же; это было показано в разделах о силлогизме.

Глава двенадцатая

[Пользование вопросами при доказательстве. Ошибочные силлогизмы, возражения и неправильные формы умозаключений]

Если силлогистический вопрос и посылка, [составляющая один член] противоречия, одно и то же, посылки же в каждой науке есть то, из чего строится силлогизм в соответствии с каждой наукой, то возможен некий относящийся к науке вопрос, из которого получается подходящий для каждой науки силлогизм. Ясно, таким образом, что не всякий вопрос относится, [скажем], к геометрии или к врачебному искусству, и точно так же и в отношении других наук, а только те вопросы относятся [к геометрии], исходя из которых что-либо доказывается о том, чем занимается геометрия, или которые сами доказываются из тех же [начал], что и геометрия, как, например, вопросы, касающиеся оптики. И точно так же в отношении других [наук]. И ответ [на вопросы геометрии] следует давать исходя из геометрических начал и заключений, в отношении же самих начал не следует давать ответ геометру как геометру. И точно так же в отношении других наук. Поэтому не следует каждому сведущему человеку ни ставить любой вопрос, ни давать ответ на любой вопрос, а ему следует ограничиваться лишь тем, что́ относится к [данной] науке. Если же таким именно образом с геометром обсуждают как с геометром, то очевидно, что обсуждают надлежащим образом, если доказывают что-нибудь исходя из тех [посылок, которые относятся к данной науке]. Иначе обсуждают ненадлежащим образом. Ясно также, что в этом случае геометра нельзя опровергнуть, разве только привходящим образом. Поэтому не следует среди несведущих в геометрии рассуждать о геометрии, ибо [среди них] незамеченным останется неверно рассуждающий. И точно так же в отношении других наук.

Но если имеются геометрические вопросы, то разве имеются негеометрические вопросы [в геометрии]? И вопросы, возникающие в каждой науке по незнанию, – по какому виду незнания они геометрические? Далее: есть ли силлогизм, построенный по незнанию, силлогизм, состоящий из противолежащих друг другу [посылок], или паралогизм, но относящийся все же к геометрии? Или он из области другого искусства? Например, в отношении геометрии вопрос музыки не есть геометрический вопрос. А мнение о том, что параллельные линии пересекаются, – относится ли оно каким-то образом к геометрии и каким-то другим образом не к геометрии? Ведь [ «негеометрическое»] имеет двоякий смысл, подобно несоразмерному: с одной стороны, оно негеометрическое, потому что не содержит [ничего относящегося к геометрии], подобно тому как несоразмерное – [к соразмерности]; с другой стороны, потому, что содержит [геометрическое] в искаженном виде. И именно это незнание, исходящее из таких начал, противоположно [науке геометрии]. В математике с паралогизмом дело обстоит иначе; средний термин всегда берется двояко, а именно [больший крайний термин] высказывается обо всем среднем, а с другой стороны, сам средний [высказывается] обо всем другом [крайнем] (однако в сказуемом не говорится «всякое»). В математике же [отношение среднего термина к крайним] можно как бы видеть мышлением. Но в [диалектических] рассуждениях это остается незамеченным, [например]: есть ли каждый круг (kyklos) фигура? Если же его начертить, то это ясно. А [цикл] эпических стихотворений тоже есть круг? Очевидно, что нет.

Однако, если [меньшая] посылка основана на наведении, нет надобности приводить против этого [способа доказательства] какое-либо возражение, ибо, сколь [ясно, что в науке] нет такой посылки, которая не относилась бы ко многим случаям (ибо иначе она не могла бы относиться и ко всем случаям, силлогизм ведь строится из общих [посылок]), столь же ясно, что нет и [соответствующего] возражения. Ибо посылки и возражения суть одного и того же порядка; в самом деле, приводимое возражение само может стать посылкой – или доказывающей, или диалектической.

Случается, что некоторые рассуждают не по правилам силлогизма, из-за того что принимают то, что следует из обоих [крайних терминов], как это делает, например, и Кеней, чтобы доказать, что огонь разрастается в геометрической прогрессии, потому что, как он говорит, огонь разрастается быстро и эта прогрессия так же. Но в таком случае нет силлогизма; [он будет], если [сказать так]: геометрическая прогрессия следует из наиболее быстро развивающейся прогрессии, и из [наличия] огня в его движении следует наиболее быстро развивающаяся прогрессия. Таким образом, иногда невозможно выводить заключение из принятых [посылок]; иногда же это возможно, но не видят [этой возможности]. Если бы было невозможно из ложных [посылок] доказывать истинное, то раскрытие было бы легким, ибо необходимо имела бы место обоюдность. В самом деле, пусть А есть нечто существующее; если же оно существует, существует также то, о чем я знаю, что оно существует, например Б. Из Б я докажу, что есть А. Однако больше всего такая обоюдность имеет место в математике, потому что здесь не берут [как средний термин] ничего привходящего (и этим она отличается от диалектического способа рассуждения), а берут лишь определения.

Умножается [знание] не через [новые] средние термины, а посредством добавления [крайних], например А [приписывается] Б, Б – В, а В – Д, и так далее до бесконечности. [Знание умножается] и вширь, как, например, А [сказывается] и о В, и о Е; например, есть конечное или бесконечное число, скажем А, конечное нечетное число – Б, а В – некоторое нечетное число; тогда А [сказывается] о В. И пусть Д обозначает конечное четное число, Е – некоторое четное число; тогда А [сказывается] о Е.

1 ... 71 72 73 74 75 ... 227 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Аналитики. Никомахова этика - Аристотель, относящееся к жанру Античная литература / Зарубежная образовательная литература / Разное / Науки: разное. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)