`
Читать книги » Книги » Старинная литература » Античная литература » Аналитики. Никомахова этика - Аристотель

Аналитики. Никомахова этика - Аристотель

1 ... 54 55 56 57 58 ... 227 ВПЕРЕД
Перейти на страницу:
ни одному В, то А будет присуще не всем Б; получится последняя фигура. Но если БВ подвергнуть превращению в противолежащее [положение], то АБ доказывается так же, [как в предыдущем случае], тогда как АВ – через превращение в противолежащее [положение]. А именно: если Б присуще некоторым В, тогда как А не присуще ни одному В, то А не будет присуще некоторым Б. Далее, если Б присуще некоторым В, тогда как А – всем Б, то А будет присуще некоторым В, и, стало быть, получится заключение, противолежащее [посылке АВ]. Точно так же следует доказывать, если посылки находятся друг к другу в обратном отношении. Но если заключение частное, то при превращении его в противоположное [положение] не будет отрицаться ни одна из посылок, как не бывает этого и в первой фигуре; при превращении же в противолежащее [по противоречию] отрицаются обе посылки. В самом деле, допустим, что А не присуще ни одному Б и присуще некоторым В; заключение – БВ. Если же принять, что Б присуще некоторым В и АБ остается, то заключением будет, что А не присуще некоторым В, чем, однако, не отрицается первоначально принятое. Ибо возможно, что А некоторым В присуще, а некоторым нет. Далее, если Б присуще некоторым В и А – некоторым В, то силлогизма не получится, ибо ни та ни другая из принятых посылок не общая, так что посылка АБ не отрицается. При превращении же заключения в противолежащее [по противоречию] отрицаются обе посылки. В самом деле, если Б присуще всем В, тогда как А не присуще ни одному Б, то А не присуще ни одному В. Между тем А было присуще некоторым В. Далее, если Б присуще всем В и А – некоторым В, то А присуще некоторым Б. Точно так же доказывается, если общая посылка утвердительная.

Глава десятая

[Превращение заключений в третьей фигуре]

В третьей фигуре если заключение подвергается превращению в противоположное [положение], то ни одна из посылок любого силлогизма не отрицается; если же в противолежащее [по противоречию] – то отрицаются обе посылки, притом во всех силлогизмах. В самом деле, пусть будет доказано, что А присуще некоторым Б, средним термином пусть будет В и обе посылки пусть будут общими; если, стало быть, принять, что А некоторым Б не присуще, а Б присуще всем В, то никакого силлогизма об А и В не получится. Равным образом, если А не присуще некоторым Б, а всем В присуще, не получится никакого силлогизма о Б и В. Подобным же образом доказывается и когда посылки не общие. В самом деле, или обе посылки по превращении необходимо частные, или общее относится к меньшему крайнему термину; но в таком случае, как мы видели, не получается силлогизма ни по первой, ни по средней фигуре. Если же посылки подвергаются превращению в [положение], противолежащее [по противоречию], то обе они отрицаются. В самом деле, если А не присуще ни одному Б, а Б присуще всем В, то А не присуще ни одному В. С другой стороны, если А не присуще ни одному Б, но присуще всем В, то Б не будет присуще ни одному В. Точно так же – если одна посылка не общая. В самом деле, если А не присуще ни одному Б, а Б присуще некоторым В, то А не присуще некоторым В. Если же А не присуще ни одному Б, но присуще всем В, то Б не будет присуще ни одному В. Равным образом – если заключение отрицательное. В самом деле, пусть будет доказано, что А некоторым Б не присуще, и пусть посылка БВ будет утвердительной, а АВ – отрицательной; именно так, как мы видели, получается силлогизм. Если же взять [положение], противоположное заключению, то силлогизма не будет, ибо если А присуще некоторым Б, а Б – всем В, то, как мы видели, не получается силлогизма об А и В. Точно так же – если А присуще некоторым Б, но ни одному В не присуще, то, как мы видели, не получается силлогизма о Б и В. Так что посылки не отрицаются. Если же взять [положение], противолежащее заключению [по противоречию], то посылки отрицаются. В самом деле, если А присуще всем Б и Б – всем В, то А будет присуще всем В. Но было ведь предположено, что оно не присуще ни одному В. Далее, если А присуще всем Б, но ни одному В не присуще, то Б не будет присуще ни одному В. Но было ведь предположено, что оно присуще всем В. Подобным же образом доказывается, если посылки не общие. В самом деле, АВ станет в таком случае общей и отрицательной, а другая посылка – частной и утвердительной. Если же А присуще всем Б, а Б – некоторым В, то следует, что А присуще некоторым В. Но было ведь предположено, что оно не присуще ни одному В. Далее, если А присуще всем Б, но но присуще ни одному В, то Б не будет присуще ни одному В. Но было ведь предположено, что оно присуще некоторым В. Если же А присуще некоторым Б, а Б – некоторым В, то силлогизма не получится, как не получится его, если А присуще некоторым Б, но не присуще ни одному В. Так что способом, указанным выше, посылки отрицаются, другим же, только что описанным, – нет.

Итак, из сказанного очевидно, каким именно образом по превращении заключения получается в каждой фигуре силлогизм, а также когда получается заключение, противоположное посылке, и когда – противолежащее [по противоречию]. Очевидно также, что в первой фигуре эти силлогизмы получаются через среднюю и последнюю фигуры и что посылка, содержащая меньший крайний термин, всегда отрицается через среднюю фигуру, а посылка, содержащая больший крайний термин, – через последнюю; во второй же фигуре эти силлогизмы получаются через первую и последнюю фигуры и посылка, содержащая меньший крайний термин, всегда отрицается через первую фигуру; посылка, содержащая больший крайний термин, – через последнюю; наконец, в третьей фигуре эти силлогизмы получаются через первую и среднюю фигуры и посылка, содержащая больший крайний термин, всегда отрицается через первую фигуру; посылка же, содержащая меньший крайний термин, – через среднюю.

Глава одиннадцатая

[Приведение к невозможному и его отношение к превращению, главным образом по первой фигуре]

Таким образом, очевидно, что такое превращение, как оно происходит в каждой фигуре

1 ... 54 55 56 57 58 ... 227 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Аналитики. Никомахова этика - Аристотель, относящееся к жанру Античная литература / Зарубежная образовательная литература / Разное / Науки: разное. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)