`
Читать книги » Книги » Справочная литература » Энциклопедии » БСЭ БСЭ - Большая Советская Энциклопедия (ГР)

БСЭ БСЭ - Большая Советская Энциклопедия (ГР)

1 ... 68 69 70 71 72 ... 222 ВПЕРЕД
Перейти на страницу:

  В Г. м. различаются объекты графирования (например, динамика брака) и форма передачи идеи (диаграмма точечная, столбиковая, ломаная кривая и др.). По этим признакам графики, применяемые в управлении производством, можно разделить на следующие группы. 1) Графики, отражающие состав объекта и взаимосвязи его частей. К ним относятся классификационные и структурные схемы (рис. 1 , 2 ), табличные оргасхемы, схемы потоков информации (рис. 3 ) и схемы рабочих процессов (рис. 8 , В). Эта группа графиков используется для анализа различных показателей производства: затрат рабочего времени, производств, брака по причинам и виновникам, документооборота и др. 2) Графики изменения управляемого процесса во времени и пространстве. Эта группа включает гармонограммы, учётно-контрольные и плановые графики (рис. 4 , 5 ), планы объектов на местности, планировки оборудования и рабочих мест (рис. 6 ), циклограммы (рис. 8 , В). Основное назначение графиков этой группы — оперативно-календарное планирование, учёт и организация движения производства. 3) Графики функциональных зависимостей между отдельными параметрами (графики сравнения структур и параметров, рис. 7). Такого рода графики используются, в основном, для разработки нормативов, в статистическом учёте и анализе хода производства в планируемом периоде (квартал, полугодие, год). 4) Расчётные графики (номограммы и шкалограммы) служат для упрощения расчётов трудовых, материальных и календарно-плановых нормативов, а также различных математических расчётов: перевода абсолютных величин в проценты, расчёта размера партий и т.п. 5) Смешанные графики — балансовые (рис. 8 ) и сетевые графики используют для анализа хода производства одновременно по нескольким параметрам, для контроля «узких» мест и оптимизации планирования.

  По форме передачи идеи графики могут иметь разнообразный вид: точечные (рис. 5 ), столбиковые (рис. 8 , Б), прямые, ломаные и кривые линии, круговые диаграммы (рис. 2 ) и др. Графики, применяемые в управлении производством, отличаются усложнённой и комбинированной формой.

  Лит.: Герчук Я. П., Графические методы в статистике, М.. 1968; его же. Графические методы планирования и учета производства, М., 1935; его же. Графические методы управления производством, в кн.: Оргатехника в управлении и планировании производства, М., 1949, с. 102—203; Дейнеко О. А., Графические методы в управлении производством, в кн.: Научные основы управления производством, М., 1966; Организация производства на промышленных предприятиях США. [Справочник], т. 2, пер. с англ., М., 1961 (раздел: Графики Гантта); Шмид К. Ф., Руководство по графическим изображениям, пер. с англ., под ред. Я. П. Герчука, М., 1960; Кнеппель Ч.Э., Графические методы управления предприятием, 2 изд., пер. с англ., Л. — М., 1931; Вызов Л. А., Методы графических изображении. Курс лекций, М. — Л., 1930.

  В. П. Беспалов.

Рис. 8. Балансовый график контроля выполнения плана предприятия. А — учётно-плановый график. Б — собственно балансовый график, В — циклограмма. Балансовый график (Б) показывает степень готовности изделия на начало мая месяца. Плановый процент готовности указан столбиками в контрольных точках циклограммы. Так, на конец апреля для узла Б должно быть изготовлено 72% деталей собственного производства (см. точку 4 на графиках Б и В), а фактически уровень производства достиг 77% Выполнение плана (график А) в целом по изделию оказалось ниже нормы (40% против 56% по плану).

Рис. 1. Структурная схема функциональной организации управления предприятием. Показывает состав подразделений и их взаимосвязи в процессе управления предприятием.

Рис. 2. Удельный вес продукции по типам производства на станкостроительном заводе.

Рис. 6. Схема планировки конвейерной поточной линии: К — конвейер, С — станки, Р — рабочие.

Рис. 5. Карта статистического контроля размера деталей по методу индивидуальных значений; d — поле допуска; а — предупредительные зоны верхней и нижней границ поля допуска. Карта — оперативный документ, с помощью которого прогнозируются отклонения от нормального хода производства (отклонения фактических размеров детали от границ поля допуска).

Рис. 4. Плановый график подготовки производства и изготовления испытательного стенда. Служит основанием для определения исполнителей и сроков выполнения всей номенклатуры работ.

Рис. 7. График зависимости себестоимости продукции от годового выпуска: а — себестоимость годового выпуска, б — одного изделия, при разных вариантах технологического процесса; Кр — критическое количество изделий, при котором оба технологических варианта равноценны. С помощью этого графика устанавливаются условия, при которых каждый из вариантов технологического процесса наиболее экономичен. При плане выпуска, меньшем К, II вариант процесса потребует меньше затрат и даст более низкую себестоимость изделий.

Рис. 3. Схема потока информации по материально-техническому снабжению предприятия.

...графия

...гра'фия (от греч. grapho — пишу, черчу, рисую), часть сложных слов, означающих: 1) название науки, изучающей, описывающей предмет, указанный в первой части слова (например, география, историография). 2) Название графического способа воспроизведения чего-либо при помощи записи, чертежа, рисунка, печатания (например, каллиграфия, стенография, литография), а также предприятия, в котором применяются подобные способы (например, типография). 3) Тематический характер научного произведения, посвященного определенной проблеме (монография).

Графо...

Графо... (от греч. grapho — пишу, черчу, рисую), составная часть сложных слов, означающая: относящийся к письму, почерку, черчению, рисованию (например, графология).

Графов теория

Гра'фов тео'рия, раздел конечной математики , особенностью которого является геометрический подход к изучению объектов. Основное понятие теории — граф. Граф задаётся множеством вершин (точек) и множеством рёбер (связей), соединяющих некоторые (а может быть, и все) пары вершин. При этом пары вершин могут соединяться несколькими ребрами. Примеры графов: множество городов (вершины графа), например Московской области, и соединяющие их дороги (ребра графа); элементы электрической схемы и провода, соединяющие их. На рис. 1 изображен граф, вершинами которого являются станции городского метрополитена, а ребрами — пути, соединяющие соседние станции (одна из задач: указать какой-либо маршрут от станции А к станции В ). Граф называется ориентированным, если на ребрах задана ориентация, т. е. указан порядок прохождения вершин. Наконец, в Г. т. изучаются графы, у которых ребрам приписаны какие-либо веса (или символы), а также графы, в которых выделены особые вершины, называются полюсами. Примеры: диаграмма состояний автомата, сеть ж.-д. путей с указанием на дугах их длин или пропускных способностей. На рис. 2 приведена схема автомобильных дорог между Москвой и Таллином; надо, например, выбрать маршрут минимальной общей длины пути из Москвы в Таллин (эти два города — полюсы сети); сравнение двух маршрутов Москва — Ленинград — Таллин и Москва — Витебск — Рига — Таллин показывает, что путь через Ленинград короче (1049 км ).

  Одной из первых работ по Г. т. можно считать работу Л. Эйлера (1736), относящуюся к решению головоломок и математических развлекательных задач. Первые глубокие результаты были получены в 1-й половине 20 в. в связи с решением задач построения электрических цепей и подсчёта химических веществ с различными типами молекулярных соединений. Однако широкое развитие Г. т. получила лишь с 50-х гг. в связи со становлением кибернетики и развитием вычислительной техники, когда Г. т. существенно обогатилась и новым материалом, и новыми подходами и когда началось систематическое изучение графов с разных точек зрения (структурной, информационной и т. д.). Именно в это время формулировались проблематика и методы Г. т. Г. т. находит применение в теории программирования и при построении вычислительных машин, в изучении физических, химических и технологических процессов, в решении задач планирования, в лингвистических и социологических исследованиях и т. д. Г. т. имеет тесные связи как с классическими, так и с новыми разделами математики; это — топология, алгебра, комбинаторный анализ, теория чисел, теория минимизации булевских функций. Г. т. включает большое число разнообразных задач. Одни из них группируются в отдельные направления, другие стоят более изолированно. Среди сложившихся разделов Г. т. следует отметить задачи, относящиеся к анализу графов, определению различных характеристик их строения, например выяснение связности графа: можно ли из любой вершины попасть в любую; подсчёт графов или их частей, обладающих заданными свойствами, например подсчёт количества деревьев с заданным числом рёбер (дерево — неориентированный граф без циклов); решение транспортных задач, связанных с перевозками грузов по сети. Решен ряд задач по синтезу графов с заданными свойствами, например построение графа с заданными степенями вершин (степень вершины — число выходящих из неё рёбер). Имеет прикладное и теоретическое значение задача о выяснении возможности расположения графа на плоскости без самопересечений его рёбер (т. е. является ли данный граф плоским), задача о разбиении графа на минимальное число плоских графов. Для некоторых задач Г. т. (выше были приведены далеко не все) были разработаны методы их решения. Среди них: метод Пойя перечисления и подсчёта графов с заданными свойствами, теорема и алгоритм Форда — Фалкерсона для решения транспортной задачи, «венгерский» алгоритм решения задачи о назначениях и т. д. Почти все задачи теории конечных графов (практически интересны именно графы с конечным числом вершин) могут быть решены путём перебора большого числа вариантов (т. н. полный перебор), поэтому для них требуется построение эффективных алгоритмов и использование быстродействующих вычислительных машин. Такими задачами являются: задача о раскраске вершин графа, задача об определении идентичности двух графов, коммивояжёра задача . Есть задачи, требующие принципиального ответа, например задача о раскраске плоских графов, задача о восстановлении графа по его подграфам.

1 ... 68 69 70 71 72 ... 222 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение БСЭ БСЭ - Большая Советская Энциклопедия (ГР), относящееся к жанру Энциклопедии. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)