Виталий Тихоплав - Кардинальный поворот
И далее Д. Мелхиседек обращается к спирали и ряду Леонардо Фибоначчи, который жил на 250 лет раньше да Винчи.
Леонардо Пизанский (1180–1240) по прозвищу Фибоначчи, что значит «сын добродушного», итальянский математик, жил и творил в городе Пиза. Путешествуя по Востоку, он ознакомился с достижениями арабской математики и ознакомил с ними Западную Европу. В 1202 году Фибоначчи опубликовал большой труд — «Книгу о счете», а в 1220 году — «Практику геометрии». Эти работы, впервые содержавшие задачи на применение алгебры в геометрии, оказали большое влияние на развитие математики. Он же, Фибоначчи заменил римские цифры в математике на арабские.
Леонардо вел довольно аскетический образ жизни, монашествовал и часто медитировал. Обладая врожденной наблюдательностью, он, гуляя по лесу, обратил внимание на то. что в растениях и цветах проявляется связь с числами. В частности, он заметил, что когда росток ахиллеи пробивается из-под земли, у него вырастает только один маленький листик, затем на стебле появляется еще один, далее — два, а потом число листьев нарастает в соответствии с установленной Леонардо закономерностью: каждое последующее число равно сумме двух предыдущих, т. е. получается ряд: 1,1, 2, 3, 5, 8, 13…, названный рядом Фибоначчи. Такую же закономерность он получил, контролируя количество лепестков у различных цветов. Так, лилии и ирисы имеют по три лепестка; лютик — пять лепестков; некоторые дельфиниумы — восемь лепестков, златоцвет — 13, у некоторых астр их 21, а у маргариток почти всегда 34, 55 или 89 лепестков [41. С. 223].
В «Книге о счете», решая среди прочих задачу о том, «сколько пар кроликов в один год от одной пары рождается», Фибоначчи также получил последовательность чисел: 1, 2, 3, 5, 8, 13, 21, 34… Как показала жизнь, эта последовательность постоянно повторяется в окружающем нас мире. Этот ряд Фибоначчи обладает удивительным свойством: если начать делить одно число этой последовательности на предыдущее, мы будем асимптотически приближаться к трансцендентному числу 1,6180339, выражающему пропорцию золотого сечения, но никогда его не достигнем. Однако разница эта будет настолько мала, что ею можно пренебречь. Поэтому число 1,618 называют числом Фибоначчи, обозначают фи и считают его соответствующим пропорции золотого сечения.
Д. Мелхиседек пишет: «Помните, я говорил, что спираль золотого сечения не имеет начала и конца и что для жизни это трудный момент? Она может справиться с бесконечностью, но ей трудно иметь дело с чем-то, что не имеет начала… И природа сотворила ряд Фибоначчи, чтобы обойти проблему. Как если бы Бог сказал: „Хорошо, идите и творите через спираль золотого сечения“, а мы ему: „Но мы не знаем, как“. Поэтому мы что-то создали, но не спираль золотого сечения, а нечто столь быстро приближающееся к ней, что с трудом можно заметить разницу» [41. С. 224].
Ряд Фибоначчи используется не только в ботанике и животноводстве. Кстати, одним из первых обратил внимание на проявления золотой пропорции в ботанике И. Кеплер. А вообще, этот ряд хорошо отражает все объективные закономерности.
Так, интервалы, определяющие основные мажорные и минорные тонические трезвучия в музыке, соответствуют числам Фибоначчи 1, 3, 5 или 1, 5, 8. «Как показало изучение музыкальных произведений, кульминация мелодии тоже часто приходится на точку золотого сечения ее общей продолжительности» [96. С. 11].
Анализ пропорций выдающихся памятников архитектуры также показал, что их основные размеры находятся между собой в отношениях, очень близких числам Фибоначчи. Например, прославленная церковь Покрова на Нерли. Вряд ли ее творцы были знакомы с работами Фибоначчи. Но им не было чуждо чувство гармонии! Пропорции церкви соответствуют предельному отношению чисел Фибоначчи фи = = 1,618, почти так называемому золотому сечению. «Как мера и красота укажут…» — этим принципом руководствовались зодчие, возводя храм Покрова на Нерли. И оказалось, что его размеры относятся примерно как 2: 3: 5: 8, т. е. совпадают с числами Фибоначчи, а высота храма и его длина составляют золотую пропорцию [96. С. 11].
Еще в XIII столетии Фома Аквинский сформулировал один из основных принципов эстетики — чувствам человека приятны объекты, обладающие правильными пропорциями Он ссылался на прямую связь между красотой и математикой, которую нередко можно «измерить» и найти в природе В инстинктах человека заложена позитивная реакция на правильные геометрические формы как в окружающей природе, так и в рукотворных объектах, таких как произведения живописи. Фома Аквинский, таким образом, ссылался на тот же принцип, который открыл Фибоначчи.
В течение многих столетий люди пытались разгадать секреты пирамиды в Гизе. В отличие от других египетских пирамид, это не гробница, а скорее неразрешимая головоломка из числовых комбинаций. Потрясающие изобретательность, мастерство, время и труд архитекторов пирамиды, использованные ими при возведении вечного символа, указывают на чрезвычайную важность их послания, которое они хотели передать будущим поколениям. Ведь их эпоха была дописьменной, доиероглифической и символы были единственным средством записи открытий.
Ключ к геометроматематическому секрету пирамиды в Гизе, так долго бывшему для человечества загадкой, в действительности был передан Геродоту храмовыми жрецами, сообщившими ему, что пирамида построена так, чтобы площадь каждой из ее граней была равна квадрату ее высоты.
Длина грани пирамиды в Гизе равна 783,3 фута (238,7 м), высота пирамиды — 484,4 фута (147,6 м). Длина грани, деленная на высоту, приводит к соотношению фи = 1,618. Высота 484,4 фута соответствует 5813 дюймам (5-8-13) — это числа из последовательности Фибоначчи. Эти интересные наблюдения подсказывают, что конструкция пирамиды основана на пропорции фи = 1,618. Современные ученые склоняются к интерпретации, что древние египтяне построили ее с единственной целью — передать знания, которые они хотели сохранить для грядущих поколений.
Интенсивные исследования пирамиды в Гизе показали, сколь обширными были в те времена познания в математике и астрологии. Во всех внутренних и внешних пропорциях пирамиды число 1,618 играет центральную роль.
Но не только египетские пирамиды построены в соответствии с совершенными пропорциями золотого сечения. То же самое явление обнаружено и у мексиканских пирамид.
Возникает мысль, что как египетские, так и мексиканские пирамиды были возведены приблизительно в одно время людьми одного уровня развития.
Естественно, что пропорция фи не обошла и биологию. Так, если взглянуть на скелет лягушки, то можно увидеть, что все до единой кости находятся в пропорциях фи. Длина частей тела стрекозы также выдержана в этой пропорции, и даже в каждом виде рыб присутствует это вездесущее соотношение. А что же человек?
Первым подметил проявление закона золотого сечения в пропорциях человеческого тела А. Цейзинг [106. С. 86]. Он установил закономерность, согласно которой деление общей высоты человека в отношении золотой пропорции проходит через естественные членения тела. «Для того чтобы целое, разделенное на две неравные части, казалось прекрасным с точки зрения формы, между меньшей и большей частями должно быть то же самое отношение, что и между большей частью с целым».
Оказывается, и строение костных структур нашего организма основано на элементах золотой пропорции. Еще основатель графостатики К. Кульман обратил внимание, что кости человека и животного представляют собой оптимальную систему. Их геометрия соответствует максимальной несущей способности при минимальном расходе материи, образующей кости, в полном согласии с законами науки о сопротивлении материалов. Расположение клеток губчатых частей костей соответствует схемам графостатики, обеспечивающим восприятие наибольших нагрузок. Микроскопический анализ стеблей растений показал то же самое.
Рис. 16. Пропорции человека
ГЧ (размер головы) Г; ШШ1 (плечи) = 2Г; ЛЛ1 (размах рук) = 8Г; ШО (грудь) = 2Г; БК (бедро) = 2Г; Н (голень) = 2Г; ОК (пояс — колени) =3Г; ОН (щиколотки) = 5Г; ГС (макушка — ступня) = 8Г;
ШЛ (размах руки) = 3Г
На рисунке А. Дюрера «Изучение пропорций» хорошо видно: размеры тела человека (за единицу измерения выбрана голова) относятся как 1: 2: 3: 5: 8 и составляют ряд Фибоначчи (рис. 16). Стоит подчеркнуть, что пропорция фи обнаруживается во всей скелетной системе. Она обычно отмечается в тех местах, где что-то сгибается или меняет направление.
К примеру, длины костей пальцев находятся в соотношении фи друг к другу. Первая фаланга находится в соотношении фи ко второй фаланге, вторая фаланга находится в том же соотношении с третьей. Если соотнести длину предплечья с длиной ладони, то получится пропорция фи, как и длина плеча к длине предплечья. Это также применимо к костям ног и стоп. Например, отношение длины голени к длине стопы и длины бедра к длине голени.
Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Виталий Тихоплав - Кардинальный поворот, относящееся к жанру Эзотерика. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

