`
Читать книги » Книги » Проза » Русская классическая проза » Философские тексты обэриутов - Леонид Савельевич Липавский

Философские тексты обэриутов - Леонид Савельевич Липавский

1 ... 33 34 35 36 37 ... 58 ВПЕРЕД
Перейти на страницу:
во времени, не ограничено, то я могу добавлять новые слова, но за определенной точкой они не имеют значения. Почему? На определенном месте я убедился, что некоторые вещи не имеют ко мне отношения, они стали несуществующим. Это определенное место есть предельная точка или граница знаний. Но если в свое время наступит поворот — его местом будет предельная точка, но она не будет границей знания. Место следующего поворота — вторая предельная точка и число их неопределенно. Таким образом есть одна предельная точка в ряду и неопределенное число их, если наступают повороты. Надо исследовать: имеется ли последняя предельная точка и есть ли еще другие предельные точки между двумя поворотами, т.е. между двумя рядом лежащими точками. Что касается до первого, то я думаю, что есть последняя точка. Доказательство существования последней точки еще предстоит найти. Мне кажется, путь к этому я указал в «Окрестностях вещей». По всей вероятности будет доказано, что существует только одна точка, поэтому она будет последней. Но как совместить это с существованием нескольких точек? Что же касается до числа точек между двумя рядом лежащими, то я думаю так: рядом нельзя понимать как последовательность. Предельные точки не лежат в ряду. здесь нет направления, это место поворотов. Но от одной точки я перешёл к другой. Возможно ли это? Не предполагает ли всякий переход некоторого направления? Между одной точкой и другой — отсутствие, они не соединены. Может быть они лежат на одном месте. Переход от одной точки к другой есть начало, например, сотворение мира. Число начал не определяется известными нам числами и так же число точек. Между двумя точками нет ни одной, но на месте каждой — неопределенное число их, также рядом лежащая. Как классифицировать эти точки? Я отнесу к первому классу предельные точки, ко второму — те, которые лежат за предельными точками. Затем я доказываю, что предельных точек не больше одной: они не соединены, следовательно о них нельзя сказать: две; я не могу иметь больше одной предельной точки, но другая, как не соединенная, не будет второй. Но может быть есть другие числа, числа характеров и качеств? Может быть эти числа определяют предельные точки? Число точек, лежащих за предельной, не ограничено и они все в несуществующем. Действительно, за каждой вещью, не имеющей ко мне отношения, я могу найти другую вещь, не имеющую ко мне отношения. Это один способ классификации. Но можно выбрать другое основание и классифицировать точки до предельной и предельные. В этом случае тоже я не найду больше одной предельной точки, и даже, если существуют числа характеров и качеств, они определяют в этом случае только одну точку. Таким образом по второму способу классификации существует только одна предельная точка, а по первому — может быть несколько. Здесь нет противоречия: в определенном исследовании и на определенном месте существует только одна предельная точка, но в возможности — несколько. Точки, лежащие до предельной также должны быть классифицированы. Может быть, их можно будет разделить на точки, лежащие вблизи предельной и на все остальные, последние лежат в несуществующем и могут быть перенумерованы. Точки, лежащие вблизи предельной тоже могут [быть] перенумерованы, но это небольшая погрешность: нумерация их произвольна и всегда между двумя перенумерованными найдутся точки без номера. Еще надо прибавить, что когда будет доказано существование предельной точки, будет определено новое соединение и разделение точек.

2. Всякое собрание точек будет системой. Может быть это некоторые точки, даже одна, или их много и множество их определяется числом. Нет беспорядочного собрания, т.к. всякое собрание определяется или порядком или близостью. Старой системой я называю ту, которая не имеет ко мне отношения, новой — имеющую. Всякое существование их есть некоторая система, но также существующим я называю это или то, что еще не стало системой. Это или то есть начало — то что имеет ко мне отношение сейчас, когда я обратил на него внимание. Это новая система, в ней не больше одной точки. Всякая предельная точка принадлежит к новой системе. Исследование, когда понимание его не занимает времени, характер или поворот головы — вот что новая система. Чтение исследования, написанного на нескольких страницах, ряд поступков, обнаруживающих характер, занимают время — это старая система, она лежит в несуществующем. Различие старой и новой системы — небольшая погрешность. Существует только одна система — новая, она содержит всего одну точку. Как классифицировать точки старой и новой системы? Различие здесь уже дано: одна точка и все остальные. Одну точку я определю так: новая система, начало, существующее, имеющее ко мне отношение и т.д. Но имеется еще различие между новыми системами, их надо исследовать. Также различаются новые системы, как существующие и несуществующие. Есть и другие различия: начало, существующее и др. Что различает их? Какие точки принадлежат им? Есть ли числа, соответствующие этим различиям?

Я привел два примера классификации точек. Здесь есть много неясного, но некоторые точки все же различаются, поэтому, я думаю, возможна их классификация. Классификация точек — часть теории соответствий, обе они служат науке об этом и том.

Движение

Начало движения и изменения, принадлежит ли оно к изменчивому и различному или к тому же самому и неизменному? Происходит ли что, когда начинается движение или может ничего не происходит и не бывает? Но если всякое движение происходит во времени то надо исследовать отношение между временем и движением, что раньше.

Если есть какая-нибудь последовательность, например, слов или предметов, и если она неподвижна, то как ее осмотреть? Осматривая, не перехожу ли от одного к другому? Если же перехожу, то это движение. Таким образом, осматривание неподвижной последовательности есть движение. Может ты скажешь: ты осматриваешь, а другой не осматривает, он видит сразу. Но если он видит сразу, он не видит последовательности. Он видит одно. Поэтому нет последовательности, если кто-либо видит сразу. Также не может соединять тот, кто видит сразу, потому что соединяя, переходит от одного к другому. Помимо того сомнительно, чтобы он мог запомнить предыдущее. Ясно, что он в этом и не нуждается.

Но может быть, есть неподвижная последовательность, которую никто не видит? Но если вещи не существуют до названия, то не может быть, чтобы никто не видел. Поэтому нет никакой неподвижной последовательности и слова: до, после, одно за другим, предполагают возможность движения. Но тогда надо различать движение подвижное и движение как бы неподвижное. Например, последовательность чисел будет движением как бы неподвижным. Но никто не

1 ... 33 34 35 36 37 ... 58 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Философские тексты обэриутов - Леонид Савельевич Липавский, относящееся к жанру Русская классическая проза / Науки: разное. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)