`
Читать книги » Книги » Разная литература » Зарубежная образовательная литература » Удивительные числа Вселенной - Антонио Падилья

Удивительные числа Вселенной - Антонио Падилья

1 ... 57 58 59 60 61 ... 103 ВПЕРЕД
Перейти на страницу:
сцене появился бозон Хиггса, соединивший линией отдельные точки в фундаментальной физике и объяснивший, как Вселенная во многом скрывала лежащую в ее основе симметрию. Но, как мы видели, во всей этой шараде было что-то неестественное. Бозон Хиггса оказался в миллиард миллиардов раз легче. Природа не создает таких соотношений без веской причины. Так почему же оно появилось? Какая новая физика может спасти нас? В чем состоит новая симметрия?

Для Гайар и Ли, работавших летом 1974 года, новая физика нашлась очень быстро, и естественность была спасена. Однако после собрания в ЦЕРН в 2012 году прошло уже десять лет, а мы все еще пытаемся понять загадку бозона Хиггса. Новая физика, которую обещала естественность, все еще не проявила себя. Неужели естественность наконец потерпела неудачу? Неужели мы обречены жить в неожиданной и маловероятной Вселенной, даже не понимая почему? Нам нужно поближе посмотреть на эту новую проблемную частицу. Да и в целом стоит повнимательнее рассмотреть все частицы.

Краткое руководство по всем частицам, с которыми вы встретитесь в этой главе[108]

Сведения о частицах

Аристотель возненавидел бы бозон Хиггса. По правде говоря, он испытал бы отвращение ко всем частицам. Его бы оттолкнула мысль о том, что калейдоскоп природы на самом деле состоит из миллиардов и миллиардов этих миниатюрных кирпичиков. Аристотель воевал с атомистами: вел кампанию против учения Левкиппа и его ученика Демокрита — первых физиков, занимавшихся частицами. Они говорили, что вся материя состоит из крошечных неделимых кусочков, находящихся в пустоте пространства. Философы утверждали, что эти частицы (они предпочитали называть их атомами[109]) могут иметь самые разные формы: одни выпуклые, другие вогнутые, на них могут быть крючки и дырки, с помощью которых они соединяются. Атомисты полагали, что их частицы могут объяснить человеческие ощущения. Например, причиной горечи становятся угловатые частицы, оказывающиеся на языке, а сладость исходит от более округлых. Современная теория элементарных частиц, конечно, немного сложнее, но в своей основе она поддерживает атомистическое представление. Материя действительно состоит из крошечных неделимых частиц, но теперь мы называем их кварками и лептонами. Они танцуют друг с другом и с переносчиками взаимодействий, которые сами являются частицами, но другого рода. Этот балет разрастается до уровня химических связей и животворного искусства биологии.

О чем вы думаете, когда представляете какую-нибудь частицу? Я не думаю, что вы воображаете крючки и дырки, как античные атомисты. Возможно, вы представляете пылинку или крупинку пыльцы. Это, безусловно, ближе к истине, но все равно не то, что мы на самом деле имеем в виду, когда говорим о бозоне Хиггса, электроне или любой другой элементарной частице. Чтобы понять, что на самом деле представляет собой какая-то частица, нам сначала нужно поговорить о полях. В детстве я считал, что поле — это только место, где можно играть в футбол, однако в физике есть другие виды полей — невидимых сил, которые толкают и тянут. Существуют электромагнитные поля, проявляющие свою невидимую силу в притяжении магнита или в ярости грозы. И гравитационные поля, управляющие движением планет и разрывающие звезды, когда они слишком близко подходят к черной дыре. Но можно также представить электронные поля, кварковые поля и даже поле бозона Хиггса. На самом деле в поле нет ничего необычного или загадочного. Это просто нечто, принимающее разные значения в разных точках пространства и времени, и вы можете изобразить эти данные. Например, вы можете говорить о поле распределения температур на карте погоды, указывая неизбежные холода в Англии и тепло в Италии или Испании. Вы также можете говорить о поле атмосферного давления, отображающем давление воздуха, или о поле плотности в галактике, отображающем распределение межзвездного газа либо более крупных объектов, например звезд и планет. Электромагнитное поле — просто одна из таких карт, набор чисел, помечающих каждую точку пространства и времени, только теперь здесь кодируется сила электромагнитного фона.

Конечно, электромагнитное поле превосходит другие в одном смысле: это пример фундаментального поля, его нельзя разрезать и выявить лежащую в его основе структуру. Существуют и другие фундаментальные поля, такие как поле электрона, поле бозона Хиггса, поле верхнего кварка, нижнего кварка, Z-бозона и, конечно, гравитационное. Список можно продолжить. Некоторые из этих полей, например электронные и квантовые, имеют смысл только на квантовом уровне, а другие, например электромагнетизм и гравитация, могут существовать в макроскопических масштабах. Скоро мы объясним, как они работают. Но каким бы ни было поле, мы должны думать о нем как о некой специальной карте — ряде чисел, разбросанных по пространству и времени и кодирующих соответствующие физические эффекты. Например, если поле электронов везде равно нулю, вы можете быть уверены, что никаких электронов не найдете.

Где во всем этом появляются частицы? Как мы видели в главе «Число Грэма», частица в реальности является всего лишь крохотной вибрацией — квантовой рябью в квантовом поле. Представьте поверхность моря как аналог величины какого-то фундаментального поля; уровень медленно поднимается и опускается вместе с океанскими волнами. На вершине волны вы можете представить крошечную рябь — это эквивалент какой-то частицы. Рябь в разных полях дает разные частицы. Рябь в поле электрона дает электрон, в электромагнитном — фотон, в гравитационном — гравитон, в поле верхнего кварка — верхний кварк. Можно продолжать и дальше.

Также говорят о реальных или виртуальных частицах — у вас могут быть настоящие фотоны, но могут быть и виртуальные. То же справедливо для электронов, кварков, глюонов и всех прочих элементарных частиц. Все это звучит несколько загадочнее, чем есть на самом деле. Настоящая частица — та, которую вы можете «подержать в руке», например реальный фотон, испускаемый свечой, или реальный электрон, пролетающий через две щели в классическом эксперименте квантовой механики. Виртуальную частицу вы подержать не сможете. И не потому, что она теряется в эфире какой-то игры с виртуальной реальностью, а потому, что она вообще не частица. Это просто некое возмущение поля, вызванное другими частицами и другими полями. Например, электрон создает какое-то возмущение в электромагнитном поле, это возмущение ощущает другой электрон, и наоборот. Именно это возмущение и отталкивает электроны. Вы даже можете считать виртуальный фотон какой-то рябью, но это не настоящая частица в каком-либо смысле, а виртуальная. Рябь виртуального фотона не перемещается автоматически со скоростью света, как это происходит с реальными фотонами, и нет никакого способа ее ухватить.

Два электрона вызывают возмущение или рябь в электромагнитном поле, именно это мы подразумеваем под виртуальным фотоном. Слева —

1 ... 57 58 59 60 61 ... 103 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Удивительные числа Вселенной - Антонио Падилья, относящееся к жанру Зарубежная образовательная литература / Математика / Физика. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)