Это база: Зачем нужна математика в повседневной жизни - Йэн Стюарт


Это база: Зачем нужна математика в повседневной жизни читать книгу онлайн
Широкое распространение компьютеров может создать впечатление, что математика уже и не нужна, что сегодняшние технологии позволяют производить самые сложные вычислительные операции за доли секунды.
Это наивное представление побудило известного популяризатора науки Иэна Стюарта показать читателям не самые очевидные заслуги любимой дисциплины, ведь ее роль отнюдь не сводится к расчетам, и благодаря компьютерам, освобождающим нас от монотонной работы, мы просто начинаем заниматься математикой иначе.
Может показаться, что математика вышла из моды и устарела, но такой взгляд ошибочен. Без математики современный мир попросту развалился бы. В доказательство своего утверждения я покажу вам ее применение в политике и юриспруденции, в трансплантологии почек и в доставке заказов из супермаркета, в интернет-безопасности, в киношных спецэффектах и при изготовлении пружин. Мы увидим, что без математики немыслимы медицинские сканеры, цифровая фотография, широкополосные каналы связи и спутниковая навигация, она помогает нам предсказывать результаты климатических изменений, защищаться от террористов и интернет-хакеров.
Именно математика стоит за всеми преобразующими технологиями, которые делают XXI век совершенно непохожим на предшествующую эпоху. Без математики немыслимы и цифровая фотография, и современная связь, и спутниковая навигация, без нее не обойтись при прогнозировании последствий климатических изменений. Этот ряд можно продолжать и продолжать, не забыв упомянуть гуманитарные области и искусство, политику и интернет-безопасность. Словом, считает автор, потребность в этой науке универсальна, она – основа основ.
Математики всегда внимательно относились к практичности методов решения задач, хотя, когда дело стопорится, все сходятся во мнении, что любой метод лучше, чем ничего. С чисто теоретической точки зрения возможность просто доказать, что решение задачи существует, может стать серьезным шагом вперед. Почему? Потому что, если нет уверенности в существовании решения, можно напрасно потерять много времени на его поиски.
Для кого
Книга порадует тех, кто любит математику, пригодится тем, кто учит математике, будет полезна тем, кто уже начал понимать математику.
…математик – это человек, который замечает возможности для применения математики там, где остальные ничего не увидели.
* * *
В настоящее время комплекс инструментов, применяемых для компьютерной анимации, пополняют кое-какой весьма хитроумной математикой. Цель, как всегда, – сделать задачу аниматора как можно более простой, получить реалистичный результат и снизить затраты денег и времени. Мы хотим всё, причем сразу и дешево.
Предположим, например, что у киностудии имеется библиотека анимаций динозавра, содержащих последовательности его движений. В одной он несется вперед, совершая один «цикл бега», то есть один сегмент периодически повторяющегося движения. В другой – подпрыгивает и приземляется. Вам нужно создать последовательность, в которой он гонится за небольшим травоядным животным и прыгает на него. Эффективным началом работы над этой последовательностью будет сшивание десятка-другого циклов бега и добавление в конце прыжка. Конечно, затем придется чуть-чуть все поменять, чтобы зрителю не было видно, что повторяется одна и та же анимация, но для начала это совсем неплохо.
Разумно сшивать и выстраивать последовательности на уровне скелета. Все остальное – набросить сетки, добавить цвет и текстуру – можно сделать позже. Поэтому вы делаете очевидное – соединяете подряд 12 копий цикла бега и прыжок и смотрите, как выглядит результат.
Он выглядит ужасно.
Отдельные кусочки ничего, но друг с другом они гладко не стыкуются. Результат получается дерганым и неубедительным.
До недавнего времени единственным выходом была модификация стыков вручную с интерполяцией новых небольших кусочков движений. Но это было не очень просто. Однако кое-какие недавние новинки в области математических методов обещают облегчить эту задачу. Идея заключается в использовании методов сглаживания для заполнения прорех и выравнивания резких переходов. Главное – найти способы делать это с единичной костью скелета или, в более общем случае, с единичной кривой. Решив такую задачу, можно вновь сшить скелет воедино из отдельных костей.
Область математики, которую сейчас пытаются применить, называется теорией форм. Поэтому начнем с очевидного вопроса: что такое форма?
В обычной геометрии встречается множество стандартных форм: треугольник, квадрат, параллелограмм, окружность. При интерпретации в координатной геометрии эти формы превращаются в уравнения. На плоскости, например, точки (x, y) на единичной окружности в точности удовлетворяют уравнению x2 + y2 = 1. Еще один очень удобный способ представления окружности состоит в использовании так называемого параметра. Это вспомогательная переменная, скажем t, которую мы можем рассматривать как время, вместе с формулами, определяющими, как x и y зависят от t. Если t принимает ряд численных значений, то каждое его значение дает нам две координаты x(t) и y(t). Возьмите правильные формулы, и эти точки определят окружность.
Стандартные параметрические формулы для окружности имеют тригонометрический характер:
x(t) = cos t, y(t) = sin t.
Можно также изменить вид параметра в формуле и все равно получить окружность. Например, если заменить t на t3, то формулы
X(t) = cos t3, y(t) = sin t3
тоже определяют окружность, причем ту же самую. Такой эффект наблюдается потому, что параметр времени несет больше информации – не только о том, как меняются x и y. Согласно первой формуле, точка при изменении t движется с постоянной скоростью. Согласно второй формуле, нет.
Теория форм – это способ обойти проблему неопределенности. Форма – это кривая, которая рассматривается как объект, не зависящий от конкретной параметрической формулы. Так что две параметрические кривые определяют одну и ту же форму, если можно изменением параметра превратить одну формулу в другую, как при замене t на t3. За последнее столетие математики придумали общепринятый способ делать подобные вещи. Никто другой, скорее всего, об этом не подумал бы, потому что для этой идеи требуется абстрактное мышление.
Первый шаг заключается в том, чтобы рассматривать не просто одну параметрическую кривую, а «пространство» всех возможных параметрических кривых. Тогда мы говорим, что две «точки» в этом пространстве (то есть две параметрические кривые) эквивалентны, если можно перейти от одной из них к другой посредством изменения параметра. Тогда «форма» определяется как целый класс эквивалентности кривых – множество всех кривых, эквивалентных данной.
Это более обобщенный вариант приема, используемого в модулярной арифметике. Для целых чисел по модулю 5, например, «пространство» – это все целые числа, а два целых числа эквивалентны, если их разность кратна пяти. Существует пять классов эквивалентности:
Все числа, кратные 5;
Все числа, кратные 5, плюс 1;
Все числа, кратные 5, плюс 2;
Все числа, кратные 5, плюс 3;
Все числа, кратные 5, плюс 4.
Почему здесь следует остановиться? Потому что число, кратное 5, при добавлении 5 становится всего лишь следующим кратным 5.
В данном случае множество классов эквивалентности, обозначаемое Z5, обладает весьма полезной структурой. И правда, глава 5 показала, что значительная часть фундаментальной теории чисел опирается именно на эту структуру. Мы говорим, что Z5 – это «фактор-пространство» целых чисел по модулю 5. Именно его вы получите, если сделаете вид, что числа, различающиеся на 5, идентичны.
Нечто аналогичное приводит нас к созданию пространства форм. Здесь вместо целых чисел мы имеем пространство всех параметрических кривых. Вместо того чтобы менять числа на кратное 5, мы меняем формулу параметра. Так что в конечном итоге мы получаем «фактор-пространство», то есть пространство всех параметрических кривых по модулю изменений параметра. Звучит, возможно, бессмысленно, но это давно уже ставший стандартным прием, ценность которого подтверждена временем. Одна из причин его ценности в том, что фактор-пространство – это естественное описание интересующих нас объектов. Другая – в том, что обычно фактор-пространство наследует от исходного пространства его интересную структуру.
Для пространства форм основной интересной особенностью структуры является мера расстояния между двумя формами. Если взять окружность и слегка ее деформировать, мы получим замкнутую кривую, близкую к окружности, но не совпадающую с ней. Если деформировать окружность сильно, получим замкнутую кривую, которая, на интуитивном уровне, отличается от