Думай «почему?». Причина и следствие как ключ к мышлению - Джудиа Перл
Оператор Do и критерий черного хода
Чтобы понять, как работает критерий черного хода, лучше сначала интуитивно представить себе, как двигается информация в каузальной диаграмме. Мне нравится представлять связи как трубы, по которым информация распространяется от стартовой точки X до финиша Y. Не забывайте, что распространение информации идет одновременно по двум направлениям — по каузальному и некаузальному, как мы видели в главе 3.
На самом деле некаузальные пути как раз и являются источником конфаундеров. Вспомним, что я определяю их как все, что вынуждает P (Y | do (X)) отличаться от P (Y | X). Оператор do стирает все стрелки, которые входят в X и предотвращает движение информации от X в некаузальном направлении. Таким же эффектом обладает рандомизация. Наконец, к тому же самому приводит введение статистических поправок, если правильно выбрать переменные, по которым эти поправки следует вводить.
В предыдущей главе мы рассмотрели три правила, которые рассказывают нам, как остановить поток информации по любому отдельно взятому соединению. Я повторю их, чтобы подчеркнуть:
а) в соединении типа «цепочка» A → B → C введение поправок по B предотвращает движение информации об А к C и наоборот;
б) в вилке, или вмешивающемся соединении A ← B → C поправки по B также предотвращают движение информации об А к C и наоборот;
в) в коллайдере A → B ← C действуют прямо противоположные правила. Переменные A и C изначально независимы, поэтому информация об А ничего не говорит о C. Но если вы вводите поправки по B, информация начинает распространяться по «трубе», благодаря эффекту объяснения. Мы должны также держать в уме еще одно фундаментальное правило:
г) выравнивание по нисходящей или опосредованной переменной подобно частичному выравниванию по исследуемой переменной. Выравнивание по переменной, нисходящей по отношению к медиатору, частично закрывает трубу; выравнивание по переменной, нисходящей по отношению к точке схождения, частично открывает трубу.
А что же будет в случае более длинных труб с большим числом соединений, вроде такой: A ← B ← C → D ← E → F → → G → H ← I ← J?
Ответ очень прост: если хоть одна связь окажется заблокирована, то J ничего не сможет «узнать» про A по этому пути. Таким образом, у нас множество вариантов прервать сообщение между A и J: вводить поправки по B, по С, не вводить поправки по D (потому что это коллайдер), вводить по E и т. д. Достаточно любого из этих вариантов.
Вот почему обычная статистическая процедура выравнивания по всем параметрам, которые только можно измерить, так ошибочна. На самом деле приведенный выше путь заблокирован даже в том случае, если мы не вводим никаких поправок! Коллайдеры к D и G закрывают путь без посторонней помощи. Введение поправок по D и G откроет этот путь и позволит J «услышать» A.
Итак, чтобы устранить конфаундеры между X и Y, нам необходимо только заблокировать все некаузальные пути между ними, не блокируя и не нарушая каузальные пути. Выражаясь точнее, путь черного хода — это любой путь от X до Y, который начинается со стрелки, входящей в Х. Конфаундеры между X и Y будут устранены, если мы закроем все черные ходы (потому что такие пути допускают ложную корреляцию между X и Y). Если мы делаем это, выравнивая выборку по некоторому набору переменных Z, следует также убедиться, что ни один фактор из Z не является нисходящей переменной по отношению к X на каузальном пути, иначе этот путь полностью или частично закроется.
Вот и все! С этими правилами устранение конфаундеров становится настолько элементарным делом, что можно воспринимать его как игру. Я предлагаю вам несколько примеров, чтобы войти во вкус и увидеть, как это просто. Если вам все еще кажется, что это сложно, будьте уверены, что существуют алгоритмы, решающие все эти задачи в течение наносекунд. В каждом случае цель игры — определить набор переменных, которые устранят конфаундеры между X и Y. Другими словами, они не должны исходить от X и они должны блокировать все черные ходы.
Игра 1
Эта — совсем простая! К X не идет ни одной стрелки, следовательно, черных ходов нет. Нам не нужно вводить никаких поправок.
Тем не менее некоторые исследователи сочтут B конфаундером. Оно связано с X по цепочке X → A → B. Оно связано с Y у особей, у которых X = 0, потому что имеется открытый путь B ← A → Y, не проходящий через Х. И при этом B не находится на каузальном пути X → A → Y. Таким образом, оно проходит трехступенчатое «классическое эпидемиологическое» определение конфаундера, но не соответствует критерию черного хода и поправки, введенные по нему, чреваты неприятностями.
Игра 2
В этом примере следует рассматривать A, B, C и D как «доэкспериментальные» переменные (экспериментальное воздействие, как всегда, обозначено X). Теперь имеется один черный ход X ← A → B ← D → E → Y. Этот путь уже блокирован коллайдером в B, поэтому нам опять не нужно вводить никаких поправок. Многие статистики стали бы выравнивать выборки по B или C, думая, что в этом нет вреда, поскольку они случаются до опыта. Один известный статистик еще совсем недавно писал: «Избегание введения поправок по некоторым наблюдаемым ковариантам… это ненаучная кустарщина». Он неправ: поправки по B или C — плохая идея, потому что они откроют некаузальный путь и создадут конфаундеры между X и Y. Обратите внимание, что в этом случае мы можем снова закрыть этот путь, корректируя по A или D. Этот образец показывает, что доступны различные стратегии устранения конфаундеров. Одни исследователи пойдут легким путем и не будут вводить никаких поправок; более традиционный подход предполагает корректировку по С и D. Оба варианта верны и приведут к одному и тому же результату (если модель верна, а выборка достаточно велика).
Игра 3
В играх 1 и 2 вам не нужно было ничего делать, но теперь придется. Имеется
Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Думай «почему?». Причина и следствие как ключ к мышлению - Джудиа Перл, относящееся к жанру Зарубежная образовательная литература / Прочая научная литература. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.


