`
Читать книги » Книги » Разная литература » Зарубежная образовательная литература » Наука и кулинария. Физика еды. От повседневной до высокой кухни - Дэвид Вейтц

Наука и кулинария. Физика еды. От повседневной до высокой кухни - Дэвид Вейтц

1 ... 9 10 11 12 13 ... 67 ВПЕРЕД
Перейти на страницу:
в своих духовках и сообщили ее нам. Как видно по рисунку, большая часть попала в диапазон 10 °C, однако немалая часть оказалась гораздо жарче или холоднее.

ТЕМПЕРАТУРА, ТЕПЛОТА И КАЛОРИИ

Мы часто считаем теплоту и температуру одним и тем же – или, по крайней мере, чем-то очень близким. Если на улице +35 °C, мы скажем, что день жаркий, при 0 °C – что холодный или не теплый. Температура используется для того, чтобы определить, насколько что-то горячее или холодное. Но что на самом деле имеется в виду, когда вещество горячее или холодное? Мы знаем, что температура измеряет энергию движения молекул материала. Когда молекулы двигаются больше, температура выше. Когда меньше – температура ниже. А вот теплотой называют количество энергии, которую добавляют в систему или удаляют из нее. Таким образом, нагрев заставляет молекулы двигаться больше, а это значит, что измеряемая температура поднимается. Охлаждение чего-то, или удаление теплоты, уменьшает движение молекул и, таким образом, понижает температуру.

Как это ни странно, эти понятия (движение молекул, температура и теплота) тесно связаны с калориями. Ну, вы знаете, с этими штуками, из-за которых вы прибавляете в весе, если съедаете их слишком много. Откуда связь? Калории измеряют энергосодержание пищи. Номинально мы используем эту энергию, чтобы жить и заниматься повседневными делами. Если мы съедаем пищу, в которой энергии больше, чем нам необходимо, ее часть превращается в лишний вес.

Так как же калории связаны с энергией или температурой? Калории – это единицы энергии. По определению калория – мера того, сколько энергии нужно, чтобы подогреть 1 грамм воды на 1 °C. Цифры на продуктовых этикетках – это килокалории (ккал). Это энергия, необходимая для нагрева 1 килограмма воды на 1 °C. На самом деле самый точный способ определить калорийность еды – просто сжечь ее, использовав полученную энергию на подогрев воды! Устройство под названием «калориметрическая бомба» представляет собой две соединенные камеры: одна – с горящим объектом, а вторая – с нагреваемой водой. Измеряя изменение температуры воды, мы можем определить, сколько энергии выделила сгоревшая еда.

Давайте копнем поглубже. Откуда берется энергия килокалории? Вы угадали: из молекул еды. Когда мы сжигаем некий продукт, мы разрушаем связи молекул на составляющие их атомы. Эти атомы затем заново образуют очень стабильные вещества: обычно воду и углекислый газ (двуокись углерода). После этого процесса остается лишняя энергия, и именно эта энергия идет на то, чтобы заставить молекулы двигаться больше, – то есть она высвобождается в виде теплоты. Расщепляя пищу, наш организм делает нечто очень похожее, хотя, конечно, в желудке мы не доводим ее до кипения. Это происходит благодаря работе молекул, называемых ферментами, о которых мы еще будем говорить.

Фазовые превращения

Фазовые превращения постоянно происходят вокруг нас: вода кипит при 100 °C, превращаясь из жидкости в газ. Когда температура опускается ниже 0 °C, вода замерзает, превращаясь из жидкости в твердое вещество. Эти превращения – основа кулинарии, поскольку самый распространенный компонент продуктов – вода. Говоря более общо, температура, при которой происходит фазовое превращение, зависит от материала. Другие жидкости, с виду похожие на воду, ведут себя иначе. Этанол – активное вещество алкогольных напитков – превращается из жидкости в газ при гораздо более низкой температуре, около 78 °C. Так что, если вы нагреваете вино на плите, этанол выкипает первым, уменьшая содержание спирта, а сохраняется только букет. (Вот почему вы не пьянеете от вина, которое добавляете в кипящий соус.) Однако фазовые превращения в кулинарии гораздо богаче и разнообразнее, чем превращения простых ингредиентов. Рассмотрим, например, что происходит с яйцом.

Сначала, внутри только что снесенного курицей яйца, жидкость окружена твердой скорлупой. Когда вы кладете яйцо в морозильник, жидкость превращается в твердое вещество, как это происходит и с водой. Когда воду нагревают, она превращается в газ. А вот когда мы нагреваем яйцо, происходит нечто совсем другое: оно превращается в твердое вещество. Более того, после того как яйцо нагрели и, следовательно, «приготовили», обратный процесс невозможен. Возьмите сваренное вкрутую яйцо и оставьте на столе при той же температуре, с которой начали, – и оно останется твердым навсегда. А вот замороженное яйцо, как и лед, наоборот, легко превращается обратно в жидкое, как только температура поднимется. Как такое возможно? Почему фазовое превращение яйца, которое в основном состоит из воды, может так сильно отличаться от фазового превращения самой воды? Как мы увидим, причина в особых молекулах у него внутри.

РИСУНОК 1

Если мы задумаемся о разнообразных превращениях, с которыми сталкиваемся при готовке, то убедимся, что все они происходит в относительно небольшом диапазоне температур – между –20 °C и примерно 190 °C. Мы храним ингредиенты и остатки еды в холодильнике или морозильнике, потому что при температуре ниже 4 °C микробы размножаются гораздо медленнее или не размножаются вообще. Мы подвергаем пищу тепловой обработке и для того, чтобы убить вредные микробы и чтобы денатурировать или расщепить белки, в результате чего ингредиенты приобретают новую текстуру, обычно становясь тверже: все это происходит в диапазоне между 50 °C и 75 °C.

Когда мы готовим блюда из смесей ингредиентов, температура превращений обычно изменяется, хотя все равно остается в том же узком диапазоне. Вся система может иметь температуру перехода, отличную от температур перехода ее компонентов. Это связано с тем, что фазовые переходы часто зависят от сложных взаимодействий атомов и молекул. Посмотрите на температуры, указанные для воды и яйца. Яйцо в основном состоит из воды, однако критическое превращение от жидкого желтка к твердому происходит примерно при 64 °C. Это связано с коагуляцией белка, который начинает разворачиваться при этой температуре.

В качестве еще одного примера вспомним рецепт печенья из главы 1. Вы получили тесто: вкусную мягкую массу, очень далекую от готового печенья. Удивительное дело: когда тесто нагревается, сырые ингредиенты меняются до неузнаваемости. Как бы вам ни нравилось сырое тесто, вы должны признать, что испеченное печенье – совершенно другая субстанция. Печенье не течет, как жидкость, и цвет у него иной. Текстура изменилась, и теперь в нем масса пузырьков воздуха. Как это произошло? Такие разительные изменения можно наблюдать повсеместно при готовке.

Чтобы разобраться в том, как именно нагрев изменяет еду, давайте рассмотрим основные пищевые компоненты и их реакцию на нагрев. Их поведение и определяет то, что происходит с едой в целом.

Вода

Очень соблазнительно считать воду просто наполнителем для всех остальных питательных и аппетитных компонентов пищи: белков,

1 ... 9 10 11 12 13 ... 67 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Наука и кулинария. Физика еды. От повседневной до высокой кухни - Дэвид Вейтц, относящееся к жанру Зарубежная образовательная литература / Кулинария. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)