`
Читать книги » Книги » Разная литература » Прочее » Ричард Фейнман - 1. Современная наука о природе, законы механики

Ричард Фейнман - 1. Современная наука о природе, законы механики

1 ... 35 36 37 38 39 ... 60 ВПЕРЕД
Перейти на страницу:

x(t+e)=x(t)+ evx(t). (9.13)

Конечно, это выражение тем точнее, чем меньше e, но оно может быть достаточно точным, даже когда интервал e не исчезающе мал. Что теперь можно сказать о скорости? Чтобы определить скорость в момент t+e, очевидно, нужно знать, как она изменяется со временем, т. е. нужно знать ускорение. А как узнать его? Вот здесь-то нам на помощь приходят уравнения динамики. Именно они позволяют определить, чему равно ускорение. В нашей задаче уравнение динамики говорит, что ускорение равно -x. Поэтому

vx(t+e)=vx(t)+ eax(t), (9.14)

= vx(t)- ex(t). (9.15)

Уравнение (9.14) еще кинематическое; оно просто говорит о том, что из-за наличия ускорения скорость изменяется. Однако уравнение (9.15) уже динамическое, потому что оно связывает ускорение с силой. Оно говорит, что в данной частной задаче для данного момента времени ускорение можно заменить на -х(t). Следовательно, если в какой-то момент времени нам известны положение х и скорость vx, то мы знаем и ускорение, которое дает возможность найти скорость в следующий момент, а скорость в свою очередь определяет новое положение и т. д. Вот каким образом действует весь этот динамический меха­низм! Действующая сила немного изменяет скорость, а скорость приводит к небольшому изменению положения.

§ 5. Численнов решение уравнений

Давайте теперь действительно решим нашу задачу. Допус­тим, что мы взяли e=0,100 сек. (Если после того, как мы про­делаем все вычисления, окажется, что этот интервал не достаточ­но мал, то необходимо повторить все сначала с меньшим интервалом времени, например 0,010 сек.) Чему будет равно х(0,1), если в начальный момент времени х (0) = 1? Оно равно старому положению х(0) плюс скорость в начальный момент (которая равна нулю), умноженная на 0,10 сек. Таким образом, х(0,1) равно 1,00, ибо грузик еще не начал двигаться. Но новая скорость в момент 0,10 сек будет равна старой скорости v (0)=0 плюс e, умноженное на ускорение. А само ускорение равно -х(0)=-1,00. Так что

v(0,1)=0,00+0,10·1,00=-0,10. В момент 0,20 сек

х(0,2)=х(0,1)+ev(0,1)=1,00-0,10·0,10=0,99

и

v(0,2)=v(0,1)+ ea(0,1) =-0,10-0,10·1,00 =-0,20.

Продолжая эту процедуру еще и еще, можно найти положение и скорость в любой момент времени, а это как раз то, что нам нужно. Однако практически мы используем нехитрый прием, который позволит увеличить точность вычислений. Если бы мы продолжали начатые нами расчеты, то они оказались бы до­вольно грубыми, поскольку интервал e=0,10 сек довольно большой. Пришлось бы уменьшить его, скажем, до 0,01 сек. Но тогда, чтобы проследить движение за какой-то разумный отрезок времени, потребовалось бы сделать множество шагов. Мы же организуем процесс таким образом, что сможем увели­чить точность, используя тот же интервал e=0,10 сек. Этого можно достичь, несколько изменив метод расчета.

Заметьте, что новое положение тела равно старому плюс интервал времени e, умноженный на скорость. Но что это за скорость? В какой момент? В начале интервала одна скорость, а в конце она совсем другая. Прием состоит в том, чтобы брать скорость в середине интервала. Если известна скорость в на­стоящий момент и известно, что она меняется, как же можно надеяться получить удовлетворительный результат, считая, что тело все время движется с той же скоростью, что и в на­стоящий момент? Более разумно использовать какую-то сред­нюю скорость между началом и концом интервала. Те же рассуждения применимы к изменению самой скорости: для под­счета ее изменений нужно использовать ускорение в средней точке между двумя моментами времени, в которых необходимо найти скорость. Таким образом, реально мы будем пользовать­ся следующими уравнениями: положение в конце интервала равно положению в начале плюс интервал e, умноженный на скорость в середине интервала. Эта скорость в свою очередь равна скорости в середине предыдущего интервала (т. е. на отрезок e меньше) плюс ускорение в начале интервала, умно­женное на e.

Таким образом, мы будем пользоваться уравнениями

Остается еще один небольшой вопрос: что такое v (e/2)? Вна­чале у нас было v (0), а не v (-e/2). Но теперь, чтобы начать наши вычисления, необходимо использовать дополнительное уравнение v(e/2)=v (0)+( e/2)а(0).

Таблица 9.1 · решение уравнения (dvx/dt)=-x Интервал e=0,10 сек

Ну, а теперь все готово для расчетов. Для удобства можно их выполнить в виде таблицы, в столбцах которой стоят время, положение, скорость и ускорение, причем скорость пишется в промежутках между строками (табл. 9.1). Такая таблица есть, конечно, просто удобный способ записи результатов, по­лученных из уравнений (9.16), и фактически полностью заме­няет их. Мы просто заполняем одно за другим свободные места в ней и получаем очень интересную картину движения: сначала грузик находится в покое, затем понемногу приобретает отри­цательную скорость (вверх), а это приводит к уменьшению его расстояния от точки равновесия. При этом хотя ускорение и становится меньше, оно все еще «подгоняет» скорость. Однако по мере приближения к положению равновесия (х=0) уско­рение становится все меньше и меньше, скорость нарастает все медленней и медленней, но все же еще нарастает вплоть до точки x=0, которая достигается примерно через 1,5 сек. Скажем по секрету, что произойдет дальше. Грузик, конечно, не остано­вится в точке х=0, а пойдет дальше, но теперь все пойдет наоборот: его положение х станет отрицательным, а ускоре­ние — положительным. Скорость начнет уменьшаться. Инте­ресно сравнить полученные нами числа с функцией cost. Результат этого сравнения представлен на фиг. 9.4.

Фиг. 9.4. График движения грузика на пружинке.

Оказы­вается, что в пределах точности наших расчетов (три знака после запятой) совпадение полное! Позднее вы узнаете, что функция cos t — точное решение нашего уравнения, так что у вас теперь есть наглядное представление о мощи численного анализа: столь простой расчет дает столь точный результат.

§ 6. Движение планет

Приведенный анализ очень подходит к движению осцилли­рующей пружинки с грузиком, но можно ли таким же путем вычислять движение планеты вокруг Солнца? Давайте посмот­рим, можно ли при некоторых приближениях получить эллип­тическую орбиту. Предположим, что Солнце бесконечно тяжелое в том смысле, что его движение не будет приниматься в расчет.

Допустим, что в известной точке планета начала свое дви­жение и имеет определенную скорость. Она движется во­круг Солнца по какой-то кривой, и мы попытаемся определить с помощью уравнений движения Ньютона и его же закона все­мирного тяготения, что это за кривая. Как это сделать? В не­который момент времени планета находится в каком-то опреде­ленном месте, на расстоянии r от Солнца; в этом случае извест­но, что на нее действует сила, направленная по прямой к Солнцу, которая, согласно закону тяготения, равна определенной по­стоянной, умноженной на произведение масс планеты и Солнца и деленной на квадрат расстояния между ними. Чтобы рассуж­дать дальше, нужно выяснить, какое ускорение вызывает эта сила.

Однако в отличие от предыдущей задачи нам потребуются теперь компоненты ускорения в двух направлениях, которые мы назовем х и у. Положение планеты в данный момент будет определяться координатами х и у, поскольку третья коорди­ната z всегда равна нулю.

Действительно, координатная плоскость ху выбрана нами таким образом, что z-компоненты как силы, так и начальной скорости равны нулю, а поэтому нет никаких причин, которые бы заставили планету выйти из этой плоскости. Сила при этом будет направлена по линии, соединяющей планету с Солнцем, как это показано на фиг. 9.5.

Фиг. 9.5. Сила притяжения, действующая на планету.

Из этого рисунка видно, что горизонтальная компонента силы так относится к полной ее величине, как координата х относится к расстоянию r. Это сразу следует из подобия тре­угольников. Кроме того, если х положительна, то Fx отрица­тельна, и наоборот.

Таким образом, FxъFъ=-x/r, или Fя=-ъFъxlr=-GM mx/r3 и соответственно Fy=-GMmy/r3. Теперь можно воспользо­ваться динамическими законами (9.7) и написать, что х- или y-компонента ускорения, умноженная на массу планеты, равна соответственно х- или y-компоненте силы:

Это именно та система уравнений, которую мы должны решить. Для того чтобы упростить вычисления, предположим, что либо единицы измерения времени или массы выбраны соответствую­щим образом, либо нам просто повезло, словом, получилось так, что GM=1. Для нашего случая предположим, что в на­чальный момент t=0 планета находилась в точке с координа­тами х=0,500 и у=0,000, а скорость ее в этот момент направ­лена параллельно оси у и равна 1,6300. Как же в этом случае делаются расчеты? Снова составляется таблица со столбцами для времени t, координаты х, x-компонент скорости vx и уско­рения ах. Затем идут отделенные чертой три колонки: для координаты y, у-компонент скорости и ускорения. Однако, для того чтобы подсчитать ускорения, мы должны воспользо­ваться уравнением (9.17), согласно которому его компоненты равны —х/r3 и —у/r3, а r=Ц(x2+y2). Так что, получив х и у, мы должны где-то в сторонке провести небольшие вы­числения — извлечь квадратный корень из суммы квадра­тов и получить расстояние. Удобно также отдельно вычис­лить и 1/r3.

1 ... 35 36 37 38 39 ... 60 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Ричард Фейнман - 1. Современная наука о природе, законы механики, относящееся к жанру Прочее. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)