`
Читать книги » Книги » Разная литература » Прочее » Ричард Фейнман - 1. Современная наука о природе, законы механики

Ричард Фейнман - 1. Современная наука о природе, законы механики

1 ... 20 21 22 23 24 ... 60 ВПЕРЕД
Перейти на страницу:

Иногда мы строим догадки потому, что хотим при ограничен­ности своих знаний сказать как можно больше о данной ситуа­ции. В сущности ведь любое обобщение носит характер догадки. Любая физическая теория — это своего рода догадка. Но догадки тоже бывают разные: хорошие и плохие, близкие и дале­кие. Тому, как делать наилучшие догадки, учит нас теория веро­ятностей. Язык вероятностей позволяет нам количественно го­ворить о таких ситуациях, когда исход весьма и весьма неопре­деленен, но о котором все же в среднем можно что-то сказать.

Давайте рассмотрим классический пример с подбрасыванием монеты. Если монета «честная», то мы не можем знать наверня­ка, какой стороной она упадет. Однако мы предчувствуем, что ври большом числе бросаний число выпадений «орла» и «решки» должно быть приблизительно одинаковым. В этом случае го­ворят: вероятность выпадения «орла» равна половине.

Мы можем говорить о вероятности исхода только тех наблю­дений, которые собираемся проделать в будущем. Под вероятнос­тью данного частного результата наблюдения понимается ожидаемая нами наиболее правдоподобная доля исходов с данным результатом при некотором числе повторений наблюдения. Вообразите себе повторяющееся N раз наблюдение, например подбрасывание вверх монеты. Если NА — наша оценка наибо­лее правдоподобного числа выпадений с результатом А, напри­мер выпадений «орла», то под вероятностью Р(А) результата А мы понимаем отношение

P(A) =NA/N (6.1)

Наше определение требует некоторых комментариев. Преж­де всего мы говорим о вероятности какого-то события только в том случае, если оно представляет собой возможный резуль­тат испытания, которое можно повторить. Но отнюдь не ясно, имеет ли смысл такой вопрос: какова вероятность того, что в этом доме поселилось привидение?

Вы, конечно, можете возразить, что никакая ситуация не может повториться в точности. Это верно. Каждое новое наблю­дение должно происходить по крайней мере в другое время или в другом месте. По этому поводу я могу сказать только одно: необходимо, чтобы каждое «повторное» наблюдение казалось нам эквивалентным. Мы должны предполагать по крайней мере, что каждый новый результат наблюдения возник из равноцен­ных начальных условий и из одного и того же уровня началь­ных знаний. Последнее особенно важно. (Если вы заглянули в карты противника, то, конечно, ваши прогнозы о шансах на выигрыш будут совсем другими, чем если бы вы играли честно!)

Хочу отметить, что я не собираюсь рассматривать значения N и NАв (6.1) только как результат каких-то действительных на­блюдений. Число NА— это просто наилучшая оценка того, что могло бы произойти при воображаемых наблюдениях. Поэтому вероятность зависит от наших знаний и способностей быть пророком, в сущности от нашего здравого смысла! К счастью, здравый смысл не столь уже субъективен, как это кажется на первый взгляд. Здравым смыслом обладают многие люди, и их суждения о степени правдоподобия того или иного события в большинстве случаев совпадают. Однако вероятность все же не является «абсолютным» числом. Поскольку в каком-то смыс­ле она зависит от степени нашего невежества, постольку с из­менением наших знаний она может меняться.

Отмечу еще одну «субъективную» сторону нашего определе­ния вероятности. Мы говорили, что NА это «наша оценка на­иболее вероятного числа случаев». При этом, конечно, мы не надеялись, что число нужных нам случаев будет в точности равно NА, но оно должно быть где-то близко к NA; это число более вероятно, чем любое другое. Если подбрасывать монету вверх 30 раз, то вряд ли можно ожидать, что число выпадений «орла» будет в точности 15; скорее это будет какое-то число около 15, может быть 12, 13, 14, 15, 16 или 17. Однако если необхо­димо выбрать из этих чисел какое-то одно число, то мы бы реши­ли, что число 15 наиболее правдоподобно. Поэтому мы и пишем, что Р (орел) = 0,5.

Но почему все же число 15 более правдоподобно, чем все остальные? Можно рассуждать следующим образом: если наи­более вероятное число выпадений «орла» будет no, а полное число подбрасываний N, то наиболее вероятное число выпаде­ний «решек» равно N-NO. (Ведь предполагается, что при каж­дом подбрасывании должны выпасть только либо «орел», либо «решка» и ничего другого!) Но если монета «честная», то нет основания думать, что число выпадений «орла», например, дол­жно быть больше, чем выпадений «решки»? Так что до тех пор, пока у нас нет оснований сомневаться в честности подбрасываю­щего, мы должны считать, что Np=Nо, а следовательно, Np=no=N/2, или Р(орел) = P(решка) = 0,5.

Наши рассуждения можно обобщить на любую ситуацию, в которой возможны mразличных, но «равноценных» (т. е. равно­вероятных) результатов наблюдения. Если наблюдение может привести к mразличным результатам и ни к чему больше и если у нас нет оснований думать, что один из результатов пред­почтительнее остальных, то вероятность каждого частного исхода наблюдения А будет 1/m, т. е. Р(А) = 1/m.

Пусть, например, в закрытом ящике находятся семь шаров разного цвета и мы наугад, т. е. не глядя, берем один из них. Вероятность того, что у нас в руке окажется красный шар, равна 1/7. Вероятность того, что мы из колоды в 36 карт вытащим даму пик, равна 1/36, такая же, как и выпадение двух шесте­рок при бросании двух игральных костей.

· · ·

В гл. 5 мы определяли размер ядра с помощью затеняемой им площади или так называемого эффективного сечения. По существу речь шла о вероятностях. Если мы «обстреливаем» бы­стрыми частицами тонкую пластинку вещества, то имеется некая вероятность, что они пройдут через нее, не задев ядер, однако с некоторой вероятностью они могут попасть в ядро. (Ведь ядра столь малы, что мы не можем видеть их, мы, следо­вательно, не можем прицелиться, и «стрельба» ведется вслепую.) Если в нашей пластинке имеется nатомов и ядро каждого из них затеняет площадь а, то полная площадь, затененная ядра­ми, будет равна na. При большом числе N случайных выстрелов мы ожидаем, что число попаданий NCбудет так относиться к полному числу выстрелов, как затененная ядрами площадь от­носится к полной площади пластинки:

NC/N=s/A. (6.2)

Поэтому можно сказать, что вероятность попадания каждой из выстреленных частиц в ядро при прохождении сквозь пластин­ку будет равна

РC =ns/A, (6.3)

где n/А просто число атомов, приходящихся на единицу площади пластинки.

§ 2. Флуктуации

Теперь мне бы хотелось несколько подробнее показать, как можно использовать идею вероятности, чтобы ответить на во­прос: сколько же в самом деле я ожидаю выпадений «орла», если подбрасываю монету N раз? Однако, прежде чем ответить на него, давайте посмотрим, что все-таки дает нам такой «эк­сперимент». На фиг. 6.1 показаны результаты, полученные в первых трех сериях испытаний по 30 испытаний в каждой.

Фиг. 6.1. Последовательность выпадения «орла» и «решки».

Три серии опытов подбрасывания моне­ты по 30 раз в каждой серии.

Последовательности выпадений «орла» и «решки» показаны в том порядке, как это происходило. В первый раз получилось 11 выпадений «орла», во второй — тоже 11, а в третий — 16. Можно ли на этом основании подозревать, что монета была «не­честной»? Или, может быть, мы ошиблись, приняв 15 за наиболее вероятное число выпадений «орла» в каждой серии испытаний?

Сделаем еще 97 серий, т. е. 100 серий по 30 испытаний в каждой. Результаты их приведены в табл. 6.1.

Таблица б.1 · число выпадений «орла»

Проведено несколько серий испытаний, по 30 подбрасываний монеты в каждой

Взгляните на числа, приведенные в этой таблице. Вы видите, что большинство результатов «близки» к 15, так как почти все они расположены между 12 и 18. Чтобы лучше прочувствовать эти результаты, нарисуем график их распределения. Для этого подсчитаем число испытаний, в которых получилось k выпаде­ний «орла», и отложим это число вверх над k. В результате по­лучим фиг. 6.2.

1 ... 20 21 22 23 24 ... 60 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Ричард Фейнман - 1. Современная наука о природе, законы механики, относящееся к жанру Прочее. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)