`
Читать книги » Книги » Разная литература » Прочее » Ричард Фейнман - 1. Современная наука о природе, законы механики

Ричард Фейнман - 1. Современная наука о природе, законы механики

1 ... 17 18 19 20 21 ... 60 ВПЕРЕД
Перейти на страницу:

Можно измерять промежутки времени, гораздо более корот­кие, чем 10-12 сек, но для этого используются совершенно дру­гие методы. В сущности используется другое определение поня­тия «время». Один из таких методов — это измерение расстоя­ния между двумя событиями, происходящими на движущемся объекте. Например, пусть в движущемся автомобиле сначала включают, а затем выключают фары. Если известно, где были включены и выключены фары и какова была скорость автомо­биля, то можно вычислить, сколько времени они горели. Для этого нужно расстояние, на протяжении которого горели фары, разделить на скорость автомобиля.

Именно таким методом в последние годы измерялось время жизни p°-мезона. При наблюдении в микроскоп мельчайших следов, оставленных на фотоэмульсии, в которой родился p°-мезон, было обнаружено следующее: p°-мезон, двигаясь со ско­ростью, близкой к скорости света, прежде чем распасться, про­ходит в среднем расстояние около 10-7 м. Таким образом, время жизни p°-мезона составляет всего лишь 10-16 сек! Необходимо подчеркнуть, что здесь было использовано несколько другое определение понятия «время», но, поскольку оно не приводит к каким-либо противоречиям, можно быть уверенным в том, что эти определения в достаточной мере эквивалентны друг другу.

Развивая технику эксперимента, а если необходимо, меняя определение понятия «время», можно обнаружить еще более быстрые физические процессы. Мы, например, можем говорить о периоде вибраций ядра или о времени жизни недавно обнару­женных «странных» резонансов (частиц), которые уже упоми­нались в гл. 2. Время жизни этих частиц лишь ненамного больше 10-24 сек! Приблизительно столько времени требуется свету (который имеет наибольшую скорость распространения), чтобы пройти расстояние, равное диаметру ядра водорода (наи­меньший из известных объектов).

Что можно сказать о еще более коротких интервалах време­ни? Имеет ли смысл вообще говорить о них, если невозможно не только измерить, но даже разумно судить о процессах, про­исходящих в течение столь коротких интервалов? Возможно, нет. Это один из тех вопросов, на которые нет ответа. Может быть, кому-нибудь из вас посчастливится ответить на него в ближай­шие 20—30 лет.

§ 4. Большие времена

Рассмотрим теперь промежутки времени, большие «суток». Измерять большие времена легко: нужно просто считать дни, пока не придумаем что-нибудь лучшего. Первое, с чем мы сталкиваемся, это год — вторая естественная периодичность, состоящая приблизительно из 365 дней. Интересно, что в природе существуют естественные счетчики лет в виде годовых колец у деревьев или отложений речного ила. В некоторых случаях можно использовать эти естественные счетчики для определения времени, отделяющего нас от какого-либо отдаленного события в прошлом.

Но, когда невозможно считать годы для очень больших отрез­ков времени, нужно искать какие-то другие способы измерения. Одним из наиболее эффективных методов является использова­ние в качестве «часов» радиоактивного вещества. Здесь мы стал­киваемся с «регулярностью» иного рода, чем в случае, скажем, маятника. Радиоактивность любого вещества для последо­вательных равных интервалов времени изменяется в одно и то же число раз.

Если начертить график зависимости радиоак­тивности от времени, то мы получим кривую типа изображенной на фиг. 5.3.

Фиг. 5.3. Уменьшение ра­диоактивности со временем.

Радиоактивность падает в два раза за каждый период полураспада Т.

Мы видим, что если радиоактивность за Т дней (период полураспада) уменьшается вдвое, то за дней она уменьшится в четыре раза и т. д. Произвольный интервал време­ни t содержит tIT «периодов полураспада», и, следовательно, количество начального вещества уменьшится в 2t/T раза.

Если мы знаем, что какой-то материал, например дерево, при своем образовании содержал некоторое количество А радиоактивного вещества, а прямые измерения показывают, что теперь он содержит количество В, то возраст этого материала можно просто вычислить, решив уравнение

(1/2)t/T=B/A.

А такие случаи, когда мы знаем первоначальное количество радиоактивного вещества, к счастью, существуют. Известно, например, что углекислый газ в воздухе содержит малую долю радиоактивного изотопа С14, период полураспада которого со­ставляет 5000 лет. Количество его благодаря действию косми­ческих лучей постоянно пополняется взамен распавшегося. Если мы измеряем полное содержание углерода в каком-то пред­мете и знаем, что определенная доля этого углерода была перво­начально радиоактивным С14, то нам известно и первоначальное количество А и мы можем пользоваться приведенной выше фор­мулой. Если же путем точных измерений установлено, что ос­тавшееся количество С14 соответствует 20 периодам полураспа­да, то можно сказать, что этот органический предмет жил при­близительно 100 000 лет назад.

Хотелось бы, однако, узнать возраст еще более древних вещей. Это можно сделать, измерив содержание других радиоактивных элементов с большими периодами полураспада. Уран, например, имеет изотоп с периодом полураспада около 109 лет, так что если какой-то материал при своем образовании 109 лет назад содержал уран, то сегодня от него осталась только половина первоначаль­ного количества. При своем распаде уран превращается в свинец. Как определить возраст горной породы, которая образо­валась много-много лет назад в результате какого-то химическо­го процесса? Свинец по своим химическим свойствам отличается от урана, поэтому они первоначально входили в разные виды горных пород. Если взять такой вид породы, который вначале должен был содержать только уран, то мы обнаружим в нем некоторое количество свинца. Сравнивая доли свинца и урана, можно определить ту часть урана, которая в результате распада превратилась в свинец. Этим методом было установлено, что воз­раст некоторых горных пород составляет несколько миллиар­дов лет. Применяя шире этот метод путем сравнения содержа­ния урана и свинца не только в некоторых горных породах, но и в воде океанов, а затем усредняя различные данные по всему земному шару, установили, что нашей планете исполнилось примерно 5,5 миллиарда лет.

Интересно, что возраст метеоритов, падающих на Землю, вы­численный по урановому методу, совпадает с возрастом самой Земли. Более того, оказалось, что и метеориты, и горные породы Земли составлены из одного и того же материала, поэтому суще­ствует мнение, что Земля образовалась из пород, «плававших» некогда в «околосолнечном» пространстве.

Некогда, во времена, еще более древние, чем возраст Земли (т. е. 5 миллиардов лет назад), начала свою историю Вселенная. Сейчас считают, что возраст по крайней мере нашей части Все­ленной достигает примерно 10—12 миллиардов лет. Нам неиз­вестно, что было до этого. В сущности опять можно спросить: «А есть ли смысл говорить о том, что было до этого? И имеет ли смысл само понятие «время» до «рождения» Вселенной?»

§ 5. Единицы и стандарты времени

Мы уже говорили, что счет времени удобно вести в каких-то стандартных единицах, скажем в днях или секундах, и измерять длительности в количествах этой единицы или ее долях. Но что же выбрать за основную стандартную единицу? Можно ли, на­пример, принять за отправную единицу человеческий пульс? Очевидно, нет. Уж очень непостоянна эта единица. Лучше об­стоит дело с часами. Двое часов согласуются гораздо лучше, чем пульс. Вы скажете: ладно, давайте возьмем часы. Но чьи? Су­ществует предание об одном швейцарском мальчике, которому хотелось, чтобы все часы в его городе отзванивали полдень и в одно и то же время. Он ходил по городу и доказывал всем, на­сколько это важно. Каждый считал, что это действительно было бы чудесно, если бы все другие часы в городе звонили полдень по его часам! В самом деле, очень трудно решить, чьи же часы мы должны выбрать в качестве стандарта. К счастью, существу­ют часы, которые признают все,— это наша Земля. Долгое время в качестве стандарта выбирался период вращения Земли. Одна­ко по мере того, как измерения становились все более точными, обнаруживалось, что вращение Земли не строго периодично, если сравнивать его с лучшими часами. А этим «лучшим часам» можно доверять, ибо они согласуются друг с другом. Сейчас известно, что по разным причинам одни дни оказываются длин­нее других и, кроме того, средний период вращения Земли на протяжении столетий несколько удлиняется.

1 ... 17 18 19 20 21 ... 60 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Ричард Фейнман - 1. Современная наука о природе, законы механики, относящееся к жанру Прочее. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)