Хранители времени. Реконструкция истории Вселенной атом за атомом - Хелфанд Дэвид
В конце концов – через 7 миллиардов лет – Солнце расширится и станет красным гигантом, поглотив Меркурий и Венеру и опалив Землю. Однако нам не придется ждать так долго, чтобы увидеть еще одну масштабную трансформацию нашей планеты. Термоядерные реакции, происходящие в ядре, и сопутствующие изменения во внутренней структуре (глава 16) постепенно делают Солнце все ярче. Примерно через миллиард лет яркость нашей звезды повысится примерно на 10 %. Величина кажется скромной, но в десять раз превышает нагрев, вызванный парниковыми газами, которые мы добавили в атмосферу за двести лет. Более теплая поверхность Земли приведет к большему испарению H2O из океанов. Но важнее всего то, как это отразится на высоте от 10 до 20 км над поверхностью Земли.
Тропосфера – это слой воздуха, который поднимается от земли примерно на 20 километров на экваторе и на 10 километров в средних широтах. Это слой, внутри которого рождается погода. На всем его протяжении температура неуклонно падает, составляя в среднем от 16 °C на поверхности до холодных –50 °C наверху. (На этих высотах в тропосфере летают самолеты, поэтому в следующий раз проверьте на мониторе полета температуру наружного воздуха.) Выше располагается стратосфера, простирающаяся вверх на 50–60 км. В ней температура снова повышается, достигая наверху примерно 0 °C. Именно в нижней стратосфере находится слой молекул озона (O3), который не позволяет большей части ультрафиолетового излучения Солнца попасть в нижние слои атмосферы и на поверхность планеты13.
Минимальная температура на границе тропосферы и стратосферы означает, что воздух там очень сухой. Во-первых, холодный воздух может содержать меньше водяного пара, чем теплый, а во‐вторых, большая часть водяного пара конденсируется в жидкость по мере того, как он поднимается и охлаждается в верхних слоях тропосферы, выпадая в виде дождя или снега, даже не достигнув границы. Поэтому в среднюю стратосферу поднимается очень мало воды. Это очень важно, потому что только там, над защитным озоновым слоем, ультрафиолетовое излучение Солнца может разрушить молекулы H2O и позволить H2 улетучиться.
Однако по мере того, как Солнце становится ярче, а пограничный слой нагревается, утечка Водорода из нынешней струйки спустя миллиард лет превратится в поток. В течение еще одного миллиарда лет большая часть океанов испарится, и Земля станет горячей, сухой и свободной ото льда. Еще через миллиард или два миллиарда лет вся вода исчезнет, и Земля станет напоминать Венеру, на которой этот процесс завершился в течение первого миллиарда лет существования Солнечной системы, после чего в атмосфере планеты начал преобладать CO2, а температура ее поверхности достигла 460 °C. Жизнь, известная нам, исчезнет. Хорошая новость в том, что у нас еще много времени (в 10 000 раз больше, чем властвуют Homo sapiens), чтобы понять, что нам делать.
Глава 15
День рождения Солнца: формирование Солнечной системы
Моя бабушка по отцовской линии была белоруской и понятия не имела, когда у нее день рождения. Причиной тому была не утрата ума – она умерла в девяносто девять лет и сохранила ясность мышления до самых последних дней. Просто в конце XIX века в царской России крестьян не особо волновало, когда у них день рождения. Полагаю, то же самое можно сказать и о Солнечной системе: выяснение точной даты ее появления на свет – это не столь серьезная проблема. Впрочем, это удовлетворило бы праздное любопытство и помогло бы объяснить, почему планеты устроены так, как устроены, а также расширило бы сферу применения наших историков-атомов за пределами существования самой Земли. В сущности, благодаря им мы даже можем получить некоторое представление о том, что происходило в окрестностях нашей планеты до того, как возникло Солнце.
Сценарий формирования
Наша галактика, Млечный Путь, представляет собой совокупность более чем 100 миллиардов звезд, удерживаемых вместе взаимным гравитационным притяжением. Все началось с крошечного колебания избыточной плотности в удивительно однородной и чисто газообразной Вселенной. Постепенно, по прошествии, возможно, миллиарда лет или еще более долгого времени, эта порция дополнительной массы обрастала веществом, медленно наращивала массу и все сильнее притягивала к себе вещество из еще более далеких пределов. По мере сжатия изначальное случайное вращение становилось все быстрее – так фигуристка прижимает к себе руки, когда хочет ускорить вращение1, – и со временем большая часть обычной материи сжалась в относительно тонкий диск, образовав галактику в форме вертушки, которую мы видим сегодня, с толщиной всего в несколько тысяч световых лет и диаметром 100 000 световых лет.
Сперва Млечный Путь состоял в основном из газа2, но процесс его отделения от окружающей среды – обрастание крошечного случайного пика плотности все большим и большим количеством вещества – воспроизвелся в микрокосме по мере того, как в результате флуктуаций газового диска начали формироваться звезды. К настоящему времени, спустя 13 миллиардов лет, в звездах находится примерно 90 % галактического газа, и только 10 % осталось для формирования будущих поколений звезд и планет.
Если сказать, что население Галактики составляет более 100 миллиардов звезд, может показаться, что она очень многолюдна, но вряд ли это так. Если мы представим Солнце (диаметром свыше полутора миллионов километров) в виде апельсина в Нью-Йорке, то Земля, размером не превышающая песчинки, расположится на расстоянии 4,5 метра от него. Самая далекая планета, Нептун, будет с горошину и займет свое место в двух городских кварталах, а следующая звезда, по размеру и температуре подобная Солнцу, – и так удачно представленная вторым апельсином, – окажется в Миннеаполисе. На долю звезд приходится лишь 100-миллиардная триллионная доля (примерно 10–23) объема Галактики. Поэтому большая часть Млечного Пути – это то, что мы называем межзвездным пространством.
Это пространство не совсем пустое – там по-прежнему остается 10 % первозданного газа, из которого еще не образовались звезды. Это вещество, как и сама Вселенная, по большей части состоит из Водорода и Гелия, но они распределены неравномерно. Почти во всем межзвездном пространстве частицы газа находятся очень далеко друг от друга: всего 1 атом на 100–1000 кубических сантиметров (всего лишь один атом Водорода в литровом контейнере – эта плотность в 10 000 раз меньше, чем лучший вакуум, который мы можем создать в лаборатории). Температуры в этих областях колеблются от нескольких сотен тысяч до нескольких миллионов кельвинов, поэтому большая часть атомов, находящихся там, ионизирована. Высокие температуры и низкие плотности создаются и поддерживаются звездными взрывами, которые мы рассмотрим в главе 16.
В нескольких процентах межзвездной среды (так мы называем вещество между звездами) газ охладился и сконденсировался до гораздо более высоких плотностей, которые составляют от 1 до 100 атомов на кубический сантиметр при температуре от 100 до 200 К. В нескольких процентах из этих процентов есть даже более плотные области – их температура не превышает 10 К, и на каждый их кубический сантиметр приходится от нескольких тысяч до десятков миллионов атомов. В этих плотных холодных облаках иногда возникают молекулы и обнаруживаются микроскопические пылинки, состоящие в основном из Углерода, Кремния и Железа, и здесь же может содержаться вещество, масса которого превышает массу Солнца во много раз, от сотен до миллиона. Именно здесь появляются на свет новые солнечные системы.
Опять же, все начинается с того, что небольшое случайное колебание плотности внутри одного из этих холодных темных облаков начинает прирастать за счет аккреции окружающего вещества. В центре формируется звездное ядро, окруженное вращающимся диском, который простирается на 100 миллиардов километров, а возможно, и еще дальше. Коллапсирующее облако, продолжая сжиматься и отделяться от окружающего вещества, становится протозвездной туманностью, предшественником новой солнечной системы. Обычно более 99 % вещества заканчивает свой путь в центральной звезде (99,86 % в случае нашей Солнечной системы), но окружающий диск все еще содержит примерно 3 триллиона триллионов тонн (3 × 1027 кг) исходного материала, из которого образуются планеты, спутники, астероиды и кометы.
Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Хранители времени. Реконструкция истории Вселенной атом за атомом - Хелфанд Дэвид, относящееся к жанру Зарубежная публицистика. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

