`
Читать книги » Книги » Научные и научно-популярные книги » Зарубежная публицистика » Хранители времени. Реконструкция истории Вселенной атом за атомом - Хелфанд Дэвид

Хранители времени. Реконструкция истории Вселенной атом за атомом - Хелфанд Дэвид

1 ... 42 43 44 45 46 ... 81 ВПЕРЕД
Перейти на страницу:

И именно это мы видим, когда анализируем соотношение изотопов в старой древесине. Начиная примерно с 1800 года содержание 13C в атмосфере неуклонно снижается, и темпы этого снижения ускоряются по мере того, как мы используем все больше ископаемого топлива. Доиндустриальный уровень содержания CO2 в атмосфере составлял 280 частей на миллион, тогда как сегодня он составляет 420 частей на миллион – иными словами, он возрос на 50 %. Между тем соотношение 13C/12C снизилось на 0,22 % с 1750 года по настоящее время из-за выброса молекул топлива, обедненных 13C8.

Откуда нам известно, что дело в ископаемом топливе, а не в современных растениях? Они также избирательно поглощают 13C, поэтому, когда они умирают и/или сгорают, они также выделяют в атмосферу CO2, обедненный изотопом 13C. Ответ на этот вопрос нам дает еще более тяжелый изотоп 14C. Поскольку он движется медленнее, чем13CO2, вероятность попадания 14CO2 в молекулы растений еще меньше. Но, как мы видели в главе 8, в них достаточно радиоактивного изотопа, чтобы с его помощью мы могли определить пределы колебаний в скорости его образования и установить возраст 14C. Однако возраст самых молодых видов ископаемого топлива составляет 66 миллионов лет. Это означает, что прошло 66 000 000 лет/5 731 год = 11 518 периодов полураспада: таким образом, в ископаемом топливе не осталось никаких атомов 14C. Поскольку мы наблюдаем резкое снижение содержания 14CO2 на 4 % за десятилетие, становится очевидным, что новый CO2 в атмосфере поступает из источника, гораздо более бедного 14CO2, чем современные растения.

К сожалению, из-за небольшого осложнения мы не можем сделать этот вывод на основе непосредственных наблюдений, отчего нам и приходится обращаться к моделям. В главе 8 мы уже говорили о том, что испытания ядерного оружия, проходившие с 1950 по 1963 год, привели к огромному выбросу 14C по всей планете, и первоначально весь он находился в атмосфере. Этот искусственный избыток ассимилировался растениями, почвой и океанами на протяжении шестидесяти последних лет, поэтому количество 14С неуклонно снижается до фонового уровня. Когда эта книга выйдет в печать, мы как раз пройдем границу, которая наблюдалась в 1950 году. Тогда уровень уже был ниже, чем до начала Промышленной революции – из-за того, как много ископаемого топлива мы потребили до этого срока, – и подсчеты показывают, что резкий подъем 14C, вызванный ядерными испытаниями (бомбовый эффект), сократился до нескольких процентных пунктов от первоначального значения, а к 2030 году он полностью исчезнет, после чего снижение, вызванное сжиганием ископаемого топлива, будет продолжаться примерно на 3,5 % за десятилетие9.

Столь высокие темпы снижения невозможно объяснить умеренной избирательностью, с которой современные растения поглощают 14С. Причиной может стать лишь то, что в атмосферу добавляется CO2, полностью лишенный этого радиоактивного изотопа, – иными словами, его источником оказываются давно умершие растения в ископаемом топливе, и деятельность человека однозначно меняет химический состав атмосферы Земли.

Температуры со времен последнего ледникового периода

Мы уже говорили о том, что климатическая система сложна, и если мы хотим расширить свои скромные записи о климате прошлого, где пока что зафиксированы лишь события минувшего века, то нам необходимы заменители термометров и гигрометров, которыми мы не располагали ни тысячу, ни десять тысяч, ни сто тысяч лет тому назад. Один из лучших индикаторов, позволяющих нам изучить всю историю человеческой цивилизации, – это соотношение изотопов в древесных кольцах.

Как мы отмечали в главе 8, годичные кольца представляют собой идеальный календарь. При помощи живых и давно умерших деревьев нам удалось построить полную летопись, охватывающую период от 13 900 лет до конца последнего ледникового периода. Самый простой показатель климата – это ширина кольца: как правило, чем оно шире, тем лучше условия роста в соответствующем году (более высокие температуры, достаточное количество воды – хотя есть и предостережения, о которых мы еще упомянем). В качестве показателя часто служит и плотность древесины, но прямой подсчет атомов в каждом кольце позволяет получить больше количественных данных. Отбирая образцы древесины из кольца, соответствующего нужному году, мы можем использовать стабильные изотопы Кислорода, Углерода и Водорода и с их помощью определить температуру и интенсивность осадков, – как если бы в том месте, где росло это дерево, у нас была небольшая метеостанция, записывающая эти числа на будущее.

Соотношение 18O/16O – основная величина, позволяющая нам определять температуру. Как и в случае с любым изотопным соотношением, о которых мы говорили прежде (C, N и т. д.), нам необходимо установить произвольный эталон. Здесь им служит так называемый Венский стандарт океанской воды (VSMOW)10 – образец, собранный в океане на глубине в несколько сотен метров, из которого удалены все соли и другие химические вещества. Значение для 18O/16O составляет 2005,2 ppm, или почти 0,20 %.

Как уже, наверное, очевидно, молекула воды, состоящая из H2 18O, будет тяжелее и, следовательно, медленнее, чем молекула, состоящая из H216O. Из этого можно сделать два вывода: (1) более тяжелой молекуле труднее перейти из жидкого состояния в газообразное (иными словами, испариться), и (2), как отмечалось в главе 10, если она все же испарится и поднимется к облакам, где остынет (и, таким образом, замедлится еще больше), ей легче найти «подружек», к которым она сможет прилипнуть и снова создать каплю воды, которая в конечном итоге выпадет в виде дождя или снега. То же самое можно сказать и о молекуле воды, в состав которой входит дейтерий – стабильный тяжелый изотоп Водорода (2H); впрочем, в последнем случае эффект слабее, поскольку меньше разница масс11.

Таким образом, содержание 18O тем выше, чем выше температура. Исследований, направленных на восстановление исторических температур при помощи данных об изотопах Кислорода в древесных кольцах, проводилось очень много. Т. Портер и его коллеги изучили 150-летнюю летопись (1850–2003 гг.) трех белых елей, растущих в дельте реки Маккензи на севере Канады12. Сравнив свои результаты с данными о температуре, полученными благодаря термометрической съемке, которую проводили на метеостанции в близлежащем аэропорту Инувик с 1957 по 2003 год, они показали, что наблюдалась тесная корреляция между измеренной температурой и значениями 18O, при этом два набора данных частично совпадали. Это позволило исследователям продлить температурную летопись до 1850 года; общее соотношение 18O/16O варьировалось от +1,7 % до +2,3 % по сравнению с VSMOW и ясно возрастало с 1970 по 2000 год, причем в последний год количественные показатели температуры были выше, чем в любой другой момент за 150-летний период. Вывод, сделанный авторами, заключается в том, что с 1950 по 2000 год температура в этом арктическом регионе поднялась на 1,0 °C, что вдвое превышает рост, зафиксированный на протяжении того же периода в более низких широтах, и согласуется с тенденцией к более выраженному потеплению в Арктике, которую нам удалось недавно пронаблюдать.

Те же исследователи измерили и соотношение 13C/12C, при помощи которого можно оценить влажность. Деревья вдыхают CO2 через устьица, крошечные поры, расположенные на нижней стороне листьев. Однако устьица – это улица с двусторонним движением: проходящие через них газы не только проникают внутрь листьев, но и выходят из них. В то время как в ходе фотосинтеза эти шлюзы используются для поглощения CO2 и выделения O2, по этому пути может выходить и H2O. Этот процесс называется транспирацией, и он очень важен для дерева, потому что потеря воды создает отрицательное давление, которое втягивает воду от корней до листьев; более того, он жизненно необходим для растущего слоя древесины (и сбора кленового сиропа для блинчиков). Если относительная влажность высока и осадков много, то поры остаются открытыми, не причиняя дереву вреда. Но в засушливых условиях дерево теряет через устьица слишком много воды, поэтому отверстия закрываются. Из-за этого CO2 попадает в лист с трудом, так что дереву приходится быть менее привередливым к предпочитаемым изотопам Углерода. Недавняя «калибровка» этого эффекта, образцами для которой послужили деревья из немецкого Шварцвальда, показала увеличение соотношения 13C/12C на 0,17 % на каждые 10 % снижения относительной влажности13.

1 ... 42 43 44 45 46 ... 81 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Хранители времени. Реконструкция истории Вселенной атом за атомом - Хелфанд Дэвид, относящееся к жанру Зарубежная публицистика. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)