Хранители времени. Реконструкция истории Вселенной атом за атомом - Хелфанд Дэвид
Большая часть рис. 3.2, как и вопрос о том, существует ли еще более глубокий уровень материи, выходит за пределы нашего исследования, поскольку нам в данный момент необходима просто надежная и точная модель атомов, из которых состоит космос. С первых микросекунд возникновения Вселенной имеют значение лишь несколько фундаментальных частиц, и их примерно полдесятка: это электроны (e или e—) и их антиматериальные двойники, позитроны (e+ или e+***); нейтрино, ассоциируемые с ними (ve и ve); а также «верхние» (u) и нижние (d) кварки и переносчики взаимодействий. Поговорим обо всех по очереди.
Электрон, открытый в 1897 году, неизмеримо мал (меньше 10–18 м, миллионная триллионная доля метра в диаметре), наделен крохотной (но определенно измеримой) массой в 9 × 10–31 кг и несет отрицательный электрический заряд –1, установленный нами произвольно как единица заряда на атомном уровне. Его антиматериальный двойник, позитрон, обладает такими же размером и массой, но, как и все античастицы, характеризуется противоположным зарядом, +1. Вещество и антивещество не очень хорошо сочетаются – более того, когда электрон встречается с позитроном, они взаимно уничтожают друг друга во вспышке света. Все атомы в современной Вселенной содержат электроны, но нам не следует забывать и о позитронах, поскольку в ходе естественных процессов, как мы еще увидим, могут рождаться и они, а сами эти процессы сыграют ключевую роль в воссоздании наших историй.
Электроны и позитроны входят в группу фермионов (см. рис. 3.2), в которой каждая частица обладает еще одним дополнительным свойством, важным для нашего повествования – это свойство с причудливым именем «спин». Представьте, что все подобные частицы – это крошечные волчки, способные вращаться лишь по часовой стрелке или против нее с амплитудой в ±½ (опять же, это произвольно выбранная шкала атомных единиц, на которой бозоны, переносчики взаимодействий, имеют спин 1 или 2). С другими частицами они вступают в гравитационное (поскольку обладают массой), электромагнитное (поскольку имеют заряд) и слабое ядерное взаимодействие (поскольку у них есть свойство, называемое «лептонным числом» ±1).
Нейтрино (ve) были обнаружены только в 1956 году, хотя ученые постулировали их существование еще за десятилетия до этого, пытаясь объяснить исчезновение энергии в определенных ядерных реакциях. Нейтрино обладают крошечными размерами и еще меньшей массой; ее верхний предел составляет примерно 1/600 000 от массы электрона. Они электрически нейтральны, и для них характерен спин с амплитудой ±½. Поскольку они могут откликаться лишь на гравитацию (очень слабо, при условии их крошечной массы) и на слабое ядерное взаимодействие, они почти не взаимодействуют с обычным веществом. За время, которое вы затратите на прочтение этой фразы, 20 000 триллионов нейтрино, излученных Солнцем, пройдут через ваше тело, а вы этого даже не заметите. Это окажется правдой даже в том случае, если вы читаете эту страницу ночью, когда Солнце находится на другой стороне Земли, поскольку нейтрино проходят прямо через земную толщу и достигнут вас, пройдя через пол. Они играют главную роль в некоторых радиоактивных распадах и будут важны, когда мы применим атомные ядра в роли часов, чтобы составить карту наших будущих исторических экскурсов.
В современной Вселенной есть еще одно семейство фермионов, кварки, которые никогда не оказываются в одиночестве; они всегда связаны в пары или триплеты (см. рис. 3.2). Важное значение для нас имеют два определенных кварка, которые сочетаются, формируя протоны и нейтроны – кварки u и d. Ученые впервые постулировали их существование в 1960-х годах, а впоследствии подтвердили и описали его в многочисленных экспериментах, проведенных на ускорителях частиц. Кварки имеют дробные заряды: u = + 2/3 и d = – 1/3, их массы составляют примерно 4,0 и 9,4 массы электрона соответственно, и, как фермионы, они также имеют спин ± 1/2. Все кварки обладают дополнительной уникальной характеристикой: они реагируют на сильное ядерное взаимодействие благодаря своему четвертому свойству, которое мы называем «цветовым зарядом».
Многие сочетания этих и четырех других разновидностей кварков возможны в принципе и могут на мгновения возникать в лабораториях. Но для нашего мира важны два – это триплет uud, образующий протон, и триплет udd, благодаря которому создается нейтрон. Простое суммирование даст нам заряды этих составных частиц: uud — +2/3 + 2/3 – 1/3 = +1 для протона и udd – + 2/3 – 1/3 – 1/3 = 0 для нейтрона. Их спины, сочетаясь, дают чистую величину в ± 1/2. Но с их массами дело обстоит совершенно иначе.
Кажется очевидным, что масса трех кварков должна просто составлять сумму масс каждого отдельного кварка. Согласно таким расчетам, масса протона должна была бы оказаться в 4,0 + 4,0 + 9,4 = 17,4 раза больше массы электрона. Но, взвесив протон, мы получим совершенно иной результат: его масса превышает массу электрона в 1836 раз, иными словами, она в сто с лишним раз больше простой суммы отдельных масс (и эквивалентна 1,67 × 10–27 кг). Откуда берется вся эта избыточная масса? Ее источник – «клей», благодаря которому кварки соединяются воедино. Как мы уже говорили, кварки – это уникальные обитатели «зоопарка частиц», поскольку только они реагируют на сильное ядерное взаимодействие. Точно так же, как и дополняющее его слабое ядерное взаимодействие, оно имеет свои особенности, поскольку существует только на масштабах, сравнимых с размерами атомного ядра (примерно 10–14 м, 1 % от триллионной доли метра). Кварк, проходящий мимо протона, скажем, в 5 % от триллионной доли метра, не отреагирует совершенно никак.
Это радикально отличается от других взаимодействий, знакомых нам по повседневной жизни, а именно электромагнитного и гравитационного – их дальность неограниченна. Чем дальше друг от друга располагаются два объекта, обладающие массой или зарядом, тем слабее воздействие электромагнетизма и гравитации, которому они подвергаются, но само оно не исчезает. Нептун находится на расстоянии в 4,5 миллиарда километров от Солнца, и сила притяжения воздействует на него в 900 раз слабее, чем на Землю, но он тем не менее движется по орбите вокруг Солнца из-за их взаимного гравитационного взаимодействия. Оба ядерных взаимодействия, напротив, просто исчезают за пределами атомного ядра.
И именно глюоны, сами по себе не обладающие массой, но в изобилии переносящие энергию, увеличивают массу протона в сто с лишним раз по сравнению с простой суммой масс составляющих его кварков (сюда вносит свой вклад и кинетическая энергия самих кварков, болтающихся в своем маленьком мешочке). У нейтрона, по сравнению с протоном, один из u-кварков заменен на немного более тяжелый d-кварк, и сам нейтрон тоже слегка массивнее (на 0,14 %). За исключением атома Водорода, ядро которого составляет один-единственный протон, все остальные атомы, о чем мы подробно поговорим чуть позже, содержат как протоны, так и нейтроны, соединенные вместе.
Ядро
Сердце атома и его сущность, воплотившая в себе все его своеобразие, – это ядро, тугой маленький шарик из протонов и нейтронов, упакованных в пространстве, диаметр которого равен всего нескольким триллионным долям миллиметра12. Здесь, где все положительно заряженные частицы находятся в такой тесноте, электростатическое отталкивание, которое испытывают протоны по отношению друг к другу, огромно, но сильное ядерное взаимодействие оказывается сильнее и удерживает частицы, не позволяя им разлететься.
Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Хранители времени. Реконструкция истории Вселенной атом за атомом - Хелфанд Дэвид, относящееся к жанру Зарубежная публицистика. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

