Сергей Семиков - Баллистическая теория Ритца и картина мироздания
В настоящее время известно более сотни элементарных частиц [85, 86]. Это изобилие давно привело к мысли, что частицы отнюдь не элементарны, а состоят из ещё более простых элементов. Полагали, что этими элементами должны быть кварки, — гипотетические частицы с невероятными свойствами. Так, любой из кварков много тяжелей частицы, которую они образуют: часть больше целого! Поэтому многие считают, что гипотеза кварков и так называемая квантовая хромодинамика — это чисто формальный способ систематизации частиц. Ну, а такая фундаментальная характеристика частиц как масса, почему-то игнорируется учёными. А, ведь, именно массы позволили Д.И. Менделееву навести порядок в мире химических элементов, среди многих десятков которых царил некогда такой же хаос. На основе известных масс элементов не только была построена их система (таблица Менделеева), но и понято строение атома. Далее покажем, что и для понимания строения элементарных частиц их масса и закон её сохранения, вводимый БТР, может иметь ключевое значение.
Прежде всего, естественно допустить, что наиболее просты и элементарны частицы, обладающие наименьшей массой (так и среди атомов самый простой — водородный). К ним можно отнести электрон, массу М которого обычно берут за единицу измерения масс других частиц (М=1), и мельчайшие из мезонов [86]. А, именно, мюон (μ-мезон) — заряженная частица, которая тяжелей электрона в 207 раз (M=207), нейтральный пион (π0-мезон, M=264) и заряженный пион (π+- или π—-мезон с M=273). Думается, именно из этих частиц, как из деталек конструктора, и построены все прочие элементарные частицы, имеющие более высокие значения массы.
И, точно, беря эти три вида мезонов в разных сочетаниях, можно получить массу любой другой частицы. Например, два заряженных и два нейтральных пиона дают в сумме массу 1074,4. Это с точностью до 0,04 % совпадает с массой η0-мезона (M=1074). Так что, эта частица состоит, вероятно, из четырёх пионов: π+, π—, π0, π0. Недаром, η0-мезон распадается всегда именно на пионы. Другой пример: 8 заряженных пионов дают в сумме массу 273×8= 2184 — это масса Λ0-гиперона, отличная от истинной всего на 0,03 %. Значит, лямбда-гиперон состоит из четырёх положительных и четырёх отрицательных пионов: Λ0=4π+ + 4π—.
Судя по точности и частоте таких совпадений, они — не случайны и должны открыть тайну строения частиц. Для этого достаточно составить несложную компьютерную программу, по-разному комбинирующую массы трёх мезонов (M=207; 264; 273) и находящую совпадения их сумм с известными массами элементарных частиц. Результаты поиска программы сведены в систему (Таблица 2). В первой колонке стоит обозначение частицы, в следующих трёх — её состав (по числу мезонов), в пятой — расчётная масса, в шестой — измеренная, в седьмой — их разница в процентах, не превосходящая 0,2 %.
Из таблицы видно, что некоторые частицы (Λ0, Δ*, Ξ*, Ω—, τ—) можно представить несколькими комбинациями — разными наборами мезонов. Как легко заметить, причина этого в том, что сумма масс 4-х мюонов и π0-мезона почти равна массе 4-х заряженных пионов (M=1092). Это означает, что и сами мезоны — это не элементарные, а составные частицы. Так, нейтральный пион должен, видимо, состоять из четырёх нейтральных частиц, имеющих массу 264/4=66 масс электрона. И каждая такая частица в сочетании с мюоном образует заряженный пион с массой M=207+66 =273 (Рис. 116).
Рис. 116. Состав и схемы распада пионов, следующие из соотношения их масс.
Эти частицы с М=66 пока никем не найдены, поэтому считают, что при распаде нейтрального пиона его масса просто исчезает, полностью переходя в гамма-излучение. Согласно БТР, это невозможно (§ 1.16), и, потому, при распаде пион должен делиться на те самые 4 частицы с М=66, которые лишь потому не открыты, что нейтральны и не оставляют следов в детекторах частиц, если только не считать их следами гамма-излучение. В дальнейшем будем для удобства называть эти частицы "гамма-мезонами" (или "гаммонами"), обозначая греческой Γ, ввиду того, что эти продукты распада пионов долгое время принимали за гамма-кванты. В ядерной физике такое случалось и прежде: рождённые распадом нейтроны из-за их нейтральности и трудноуловимости тоже поначалу приняли за гамма-кванты. Наличие гаммона и мюона в составе заряженного пиона подтверждается тем, что последний при распаде образует мюон. Оставшаяся масса 273–207=66, как считают, переходит в энергию. Но, с позиций классической физики, в которой масса сохраняется, следует считать, что эту массу незаметно уносит гаммон.
В таком случае, разные варианты устройства одной и той же частицы окажутся эквивалентны. К примеру, уже рассмотренный Λ0-гиперон состоит просто из 8-ми мюонов и 8-ми гаммонов, а лишние варианты отпадут. У иных же частиц, напротив, не нашлось даже одного точного способа представления комбинацией мезонов. Таковы нейтрон n, K-мезоны, Ξ0-гиперон и некоторые из частиц-резонансов. Есть, правда, сочетания мезонов, дающие массу почти как у этих частиц (с разницей примерно в 1 %). Однако, неидеальность таких совпадений говорит об их случайности, и программа отсеивает эти варианты, как маловероятные.
Но мы не учли другой возможности. Ведь в мире, помимо частиц, существуют античастицы, такие как позитрон, имеющие, возможно, отрицательную массу (§ 1.6). Раз масса — это количество материи, то у антиматерии масса — минусовая (§ 1.17). Этим же, с позиций классической физики и закона сохранения массы, можно объяснить бесследное исчезновение масс при аннигиляции частиц и античастиц, или, напротив, их рождение. Если в состав частицы, наряду с мезонами, иногда входят антимезоны, имеющие минусовую массу, то числу мезонов в частице можно придавать и отрицательные значения, что породит новые варианты. К примеру, 6 мюонов и один нейтральный антипион дают в сумме массу 206,7×6–264=976,1, что, с погрешностью в 0,2 %, совпадает с массой K0-мезона (M=974,1). А 6 мюонов в сумме с заряженным антипионом дают массу 206,7×6–273,1=967,1 одного заряженного K+-мезона (M=966,4), с погрешностью в 0,07 %. Поэтому, Таблица 2 дополнится новой (Таблица 3), где знаки минус соответствуют античастицам с антимассой.
Как видим, допустив существование отрицательной массы, можно и оставшиеся частицы представить в виде наборов из 3-х типов мезонов. Причём, античастиц в любом наборе — не больше двух. Если же все пионы разбить на гаммоны и мюоны (π0=4Γ; π+=μ+Γ) и представлять каждую частицу в виде набора из двух типов мезонов (μ и Γ), то во многих из таких комбинаций отрицательные массы исчезнут. Так, ρ+=7Γ+5μ; Σ—=Γ+11μ; Ξ0=17Γ+7μ. А в оставшихся случаях от минусовых масс можно избавиться, допустив, что гаммоны есть и в составе мюонов, то есть мюоны — сами составные. Действительно, как увидим в дальнейшем, вполне можно обойтись без минусовых масс, которые до сих пор служили лишь удобным формальным приёмом, и в дальнейшем будут совершенно упразднены (§ 3.20). И позитрон, и другие античастицы имеют положительную инертную и гравитационную массу (§ 1.17). Поэтому, масса частицы всегда складывается из положительных масс образующих её частиц, в том числе электронов и позитронов.
Так или иначе, массу любой частицы всегда можно представить в виде M=66x+207y, где x — число Γ-мезонов, а y — μ-мезонов. Придавая x и y различные целые значения, — составляя разные сочетания Γ- и μ-мезонов, по-разному комбинируя их, — можно предсказать новые частицы, по крайней мере, узнать их массы. Впрочем, не всякая комбинация мезонов реализуется в природе, поскольку не все такие комбинации устойчивы. Точно так же, теоретически возможны ядра, состоящие из любого числа протонов и нейтронов. Однако, лишь редкие их сочетания оказываются стабильными, устойчивыми. Другие сочетания-изотопы, хоть и менее стабильны, но тоже живут некоторое время. А все прочие сочетания протонов и нейтронов крайне неустойчивы и распадаются почти мгновенно. То же и у сочетаний мезонов: одни из образованных ими элементарных частиц живут сравнительно долго, другие — малоустойчивы и сразу распадаются. Таковы, например, частицы-резонансы (ρ, ω, φ-частицы и все помеченные звёздочкой).
Может удивить, что в распадах, помимо мезонов, возникают и более крупные частицы. Но это — естественно, если фрагменты, на которые делится частица, состоят из нескольких мезонов. Ведь и тяжёлые атомные ядра при распаде делятся не на десятки отдельных протонов и нейтронов, а на образованные из них сравнительно крупные осколки (Рис. 114). Потому и продукты деления тяжёлых частиц — это, в основном, другие тяжёлые, составные частицы (Рис. 117). А возникающие в распадах пионы и мюоны — это лишь дополнительные мелкие осколки (вроде нейтронов, вылетающих при делении тяжёлых ядер). Образуются и совсем незаметные осколки деления (к примеру, гаммоны), чем вызвано кажущееся уменьшение массы в распадах.
Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Сергей Семиков - Баллистическая теория Ритца и картина мироздания, относящееся к жанру Техническая литература. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.


