`
Читать книги » Книги » Научные и научно-популярные книги » Техническая литература » Иван Шунейко - Пилотируемые полеты на Луну

Иван Шунейко - Пилотируемые полеты на Луну

1 ... 6 7 8 9 10 ... 61 ВПЕРЕД
Перейти на страницу:

Рис. 13.1. Программа изменения угла наклона траектории полета ракеты-носителя Saturn V

Полет с постоянным углом наклона траектории

Рассматривая движение ракеты по траектории с постоянным углом наклона в постоянном гравитационном поле, предположим, что тяга, расход топлива и удельный импульс являются линейными ограниченными функциями соотношения компонентов топлива, причем тяга и расход топлива – возрастающие функции, а удельный импульс – убывающая функция.

Задача сводится к выбору такого соотношения компонентов топлива, при котором ракета в конце активного участка будет иметь максимальную скорость.

Если предположить, что потери на управление и преодоление силы аэродинамического сопротивления пренебрежимо малы, а удельный импульс постоянен, то скорость в конце активного участка полета ракеты может быть определена по формуле

Поскольку g0 и ? постоянные величины, уравнение можно проинтегрировать

Для второй ступени ракеты-носителя Saturn V можно установить, что меньший удельный импульс обеспечивает максимум конечной скорости в случае вертикального полета, так как большая тяга и меньшая продолжительность активного участка позволяют уменьшить гравитационные потери, но при горизонтальном полете член, характеризующий гравитационные потери, равен нулю, независимо от времени работы двигателей, и в этом случае желателен более высокий удельный импульс. Таким образом для какого-то промежуточного значения угла ? между 0 и 90° скорость в конце активного участка не зависит от величины удельного имлульса. Это значение можно определить по формуле граничные значения линейных функций удельного импульса и секундного расхода.

Для второй ступени ракеты-носителя Saturn V по уравнению (13;5) получим ?=3; таким образом, если угол наклона траектории меньше 3°, то желательно иметь большой удельный импульс при меньшей тяге, а если ?>3° снижение удельного импульса при увеличении тяги позволяет увеличить полезную нагрузку.

Связи между приращениями скорости и полезной нагрузки

В конечном итоге необходимо обеспечить максимум веса полезной нагрузки, а не скорости в конце активного участка траектории полета.

Для последней ступени ракеты в момент выключения двигательной установки имеем

Подставляя m1= m2+?m1, разлагая полученное выражение в ряд Тейлора и решая относительно ?m1 получим

Для ракеты-носителя Saturn V приращение характеристической скорости на 1 м/сек экивалентно увеличению веса полезной нагрузки, выводимой на траекторию полета к Луне, на 15 кг.

Полет с переменным углом наклона траектории

В практических случаях угол наклона траектории полета ракеты меняется со временем, и оптимальная величина удельного импульса не является постоянной для всего полета. Меньший удельный импульс при большей тяге выгоден на участке траектории, близком к вертикальному, затем при переходе к более пологому участку траектории целесообразно изменить соотношение компонентов топлива таким образом, чтобы обеспечить высокий удельный импульс. Однако требование достижения определенной высоты в конце активного участка усложняет анализ реального полета.

В реальном полете управление ракетой, близкое к оптимальному, обеспечивает достижение заданной высоты в конце активного участка.

Изменение расхода топлива в процессе полета в предположении постоянства удельного импульса и фиксированного времени работы двигательной установки не приводит к изменению характеристической скорости. Однако, если энерговооруженность выше и расход топлива больше на начальном этапе полета, то ракета будет двигаться с большим ускорением и, следовательно, высота полета в конце активного участка будет больше.

Таким образом, если топливо выгорает быстрее при большей тяге на начальном этапе полета, то это приводит к увеличению высоты в конце активного участка. Но высота, большая по сравнению с расчетной, нежелательна, поэтому вектор скорости будет раньше приведен в горизонтальное положение. В результате соответственно снижаются потери на преодоление гравитационных сил и на управление.

Уменьшение потерь во время полета первой ступени

Расчет на вычислительной машине показывает, что применение программного изменения соотношения компонентов топлива на активном участке полета второй ступени приводит к значительному уменьшению гравитационных потерь на активном участке полета первой ступени. На первый взгляд это кажется парадоксальным. Но этот эффект объясняется особенностями применяемой на ракете-носителе Saturn V системы управления траекторией полета.

Принцип итерационного управления реализован лишь на верхних ступенях ракеты. На активном участке первой ступени ракета-носитель Saturn V летит по жестко заданной траектории, обеспечивающей минимальные аэродинамические нагрузки. Однако, оптимальность параметров жестко заданной траектории активного участка первой ступени связана с программой работы двигательной установки второй ступени. Высокая тяга на начальном этапе работы второй ступени позволяет выбрать более пологую траекторию на активном участке первой ступени, что приводит к значительному уменьшению гравитационных потерь во время полета ракеты с работающей первой ступенью.

Уточнение статистических оценок характеристик ракеты

Статистическая неопределенность характеристик ракеты-носителя приводит к уменьшению ее полезной нагрузки. Это объясняется тем, что последняя ступень ракеты-носителя должна иметь гарантированный запас топлива, достаточный для компенсации разброса характеристик всех ступеней ракеты-носителя. Гарантийный запас топлива на третьей ступени ракеты-носителя Saturn V в 1969 г. был принят равным 1 т. Наиболее значительные потери связаны с неопределенностью тяги и удельного импульса. В табл. 2 приводятся значения частных производных веса полезной нагрузки по тяге и удельному импульсу для всех трех ступеней ракеты-носителя Saturn V. Анализ летных испытаний позволил улучшить статистические оценки характеристик двигательных установок и уменьшить гарантийный запас. Уменьшение гарантийного запаса топлива на последней ступени на 1 кг примерно равноценно соответствующему увеличению веса полезной нагрузки. [17]

Таблица 2

Таблица 3

1.4. Космический корабль Apollo

Космический корабль Apollo состоит из командного и служебного отсеков, лунного корабля и системы аварийного спасения (рис. 14.1).

В табл. 4 приведены номинальный вес и размеры корабля Apollo.

Таблица 4

Командный и служебный отсеки

Командный отсек является центром управления полетом. Все члены экипажа в течение полета находятся в командном отсеке, за исключением этапа высадки на Луну. Командный отсек – единственная часть системы Saturn-Apollo, в которой экипаж возвращается на Землю после полета на Луну. Служебный отсек несет основную двигательную установку и системы обеспечения корабля Apollo.

Рис. 14.1. Космический корабль Apollo (а), компановка корабля Apollo на ракете-носителе Saturn V (б).

Рис. 14.2. Командный отсек корабля Apollo. Внутренняя оболочка гермокабины экипажа и тепловой экран.

Командный отсек корабля Apollo фирмы North American Rockwell (США) имеет форму конуса со сферическим основанием, диаметр основания 3920 мм, высота конуса 3430 мм, угол при вершине 60°, номинальный вес 5500 кг (рис. 14.2 и 14.3).

Командный отсек имеет герметическую кабину с системой жизнеобеспечения экипажа, систему управления и навигации, систему радиосвязи, систему аварийного спасения и теплозащитный экран.

Конструктивно командный отсек выполнен в виде двух оболочек. Внутренняя оболочка из алюминиевых сотовых профилированных панелей толщиной 20…38 мм, сварной конструкции – герметическая кабина экипажа со свободным объемом 6,1 м?; внешняя оболочка из профилированных сотовых панелей толщиной 15…63 мм, сваренных из листовой нержавеющей стали толщиной 0,2…1 мм. Внешняя оболочка, образующая тепловой барьер, защищающий гермокабину экипажа, состоит из трех частей: переднего экрана, экрана гермокабины и заднего экрана, крепящихся к гермокабине двутавровыми силовыми элементами из стекловолокна, изолирующими гермокабину от теплопроводности и температурных напряжений. Дополнительная теплоизоляция обеспечивается слоем стекловолокна между оболочками.

Абляционное теплозащитное покрытие внешней оболочки командного отсека сотовой конструкции из фенольного найлона с заполнителем из эпоксидной смолы с кварцевыми волокнами и микропузырьками. Абляционное покрытие переменной толщины от 8 до 44 мм приклепывается к внешней оболочке фенольным клеем (рис. 14.2).

1 ... 6 7 8 9 10 ... 61 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Иван Шунейко - Пилотируемые полеты на Луну, относящееся к жанру Техническая литература. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)