Павел Ощепков - Жизнь и мечта
Коллега А. У нас очень много философов, но, помоему, все они стоят по ту сторону техники, конкретных наук.
Коллега Б. Я не о философах говорю, а о философском смысле. Слово «философия» меня не отталкивает, как это бывает с некоторыми представителями «чистой» науки, а привлекает. Истинный ученый не может не быть философом в своем любимом деле, ибо слово «философия» означает не что иное, как стремление к мудрости, к глубокому смыслу. Не признавать за учеными права на такое стремление по меньшей мере непростительно.
Коллега А. Я не вижу, чтобы наши знания о колебательном контуре от такого рассуждения стали шире и глубже.
Коллега Б. Знаю. Всякий, кто считает себя на вершине книжных знаний, не может без труда допустить иного толкования описанных в книгах явлений. Вот если бы мы встретились с тобой этак лет через 30—40, то, я думаю, мы легче нашли бы общий язык.
Коллега А. Что нам стоит мысленно перенестись лет на 20—30 вперед? Я согласен.
Коллега Б. Представим себе, что мы оба живем в 2000 году и случайно зашли в лекторий, где идет популярная лекция по энергоинверсии. Послушаем, о чем говорит лектор.
«Такие слова, как «энергетическая инверсия», «инвертор», «инвертоника», применительно к самому главному, чем живет человек, — к энергетике — сравнительно недавно вышли на страницы наших учебных программ.
Энергоинверсия — это обобщенное понятие о новых методах получения энергии за счет инверсии, т. е. за счет перемещения (перестановки) тепла окружающего пространства. Как и кибернетика, эта новая область науки прошла сложный путь развития. Так же как и кибернетику в свое время, ее называли лженаукой, третировали как неправильно понятые и ложно истолкованные высказывания классиков марксизма, а отдельных энтузиастов-исследователей, пытавшихся хоть немного продвинуться вперед на этом пути, называли невеждами. Но все это теперь позади, и мы можем сегодня не с опаской, а с восхищением перед человеческим разумом рассмотреть основные принципы этой новой области знаний.
308
Чтобы понять смысл этой дисциплины, надо сначала обратиться к таким привычным для нас системам, как колебательный контур, механический маятник и т. п. Что примечательного в этих системах? Примечательно в них то, что сообщенная им энергия длительное время совершает взаимные превращения одного вида энергии в другой и обратно. В колебательном контуре электрическая энергия конденсатора преобразуется в магнитную, а магнитная обратно в электрическую, и так несколько раз.
В механическом маятнике, представляющем собой тоже колебательный контур, происходит поочередное превращение потенциальной гравитационной энергии в кинетическую форму энергии и обратно».
Коллега А. В этом я пока не вижу ничего нового.
Подобными рассуждениями ты меня уже осаждал.
Коллега Б. Не делай поспешных выводов, наберись терпения. Слушай, что говорит лектор...
«И, как часто бывает в науке, одни и те же факты, одни и те же закономерности под другим углом зрения обнаруживают признаки новой взаимосвязи. В этом нет ничего удивительного. Известны случаи, когда даже сами авторы, открывшие то или иное явление, затрудняются указать на главное следствие своего открытия.
Достаточно вспомнить в связи с этим имена великого изобретателя Эдисона и великого физика Резерфорда. Первый сам открыл эмиссию электронов с накаленной вольфрамовой нити в вакууме, но упорно отрицал практические возможности ее использования. Теперь же все знают, что в мире нет ни одной радиолампы, которая не основана именно на этом явлении. Второй впервые в мире осуществил ядерную реакцию, но до конца своих дней упорно отрицал практическую возможность получения атомной энергии. Даже в 1933 г., т. е. почти накануне открытия цепной реакции, на годичном собрании Лондонского королевского общества он говорил, что «всякий, кто высказывается за возможность получения внутриатомной энергии в больших масштабах, говорит чистейший вздор».
Как глубоко ошибся этот великий ученый в своих предсказаниях, теперь известно всем.
В какой связи нас интересует сейчас колебательный контур? Почему вводный раздел энергетической инверсии мы начинаем с рассмотрения маятника, который был известен еще древним? Ответ на этот вопрос очень простой: в колебательном контуре инверсия энергии в количественном отношении многократно превосходит потери энергии за тот же период обращения.
309
В том случае, когда внутренние потери колебательного контура компенсируются внешним источником энергии, колебания становятся, как известно, незатухающими (радиотехника, часовой механизм и т. п.).
Вывод о том, что в колебательном контуре инверсируемая (обращаемая) энергия превосходит потери за тот же период обращения, имеет глубокое принципиальное и исключительно важное значение. В самом общем виде можно сказать, что потери энергии за один период колебаний составляют 1/n долю запасенной в контуре энергии, где n — число периодов колебания.
В результате огромного труда исследователей дальнейшее развитие этой мысли привело к созданию такой колебательной системы, в которой тепловая энергия среды или тела в процессе колебания стала переходить в электрическую форму энергии, а последняя вновь в тепловую форму энергии. Именно это и привело к возможности управления перераспределением энергии окружающей среды как в сторону некоторого повышения, так и в сторону понижения теплового потенциала. Именно в теплоэлектрическом колебательном контуре идея концентрации и деконцентрации энергии окружающей среды нашла свое первое воплощение».
Коллега А. Говоря от имени лектора, ты хочешь сказать, что уже достигнута возможность преобразования менее организованной, т. е. хаотической, формы энергии в более организованную форму?
Коллега Б. И да, и нет. С точки зрения теории вероятности при более низкой температуре, как ты сам мне доказывал, существует наибольший беспорядок. С этой точки зрения повышение температуры есть переход к менее вероятному состоянию. Однако последующее преобразование тепловой энергии в электрическую форму энергии с упорядоченным движением электронов означает переход тепловой хаотической энергии молекул в еще более высокоорганизованную форму энергии.
310
Коллега А. Конечно, если бы удалось найти способ прямого преобразования тепловой энергии в электрическую с соотношением 1:1, то, возможно, возникли бы условия для осуществления идеи о колебательном контуре «тепло — электричество — тепло». Но пока таких условий нет. Если же исходить из термодинамических законов, то тепловая форма энергии не допускает стопроцентного преобразования ее в другие формы. Любая другая форма энергии (например, электрическая энергия на омическом сопротивлении) может стопроцентно переходить в тепловую форму энергии, однако обратный процесс, т. е. преобразование тепловой формы энергии в электрическую, согласно законам термодинамики принципиально невозможен. Имеющееся соотношение -Цк—- является пределом даже для идеального цикла.
Коллега Б. Тут я с тобой вновь решительно не согласен. И не потому, что это соотношение неверно, а потому, что оно не учитывает всех возможных процессов.
Коллега А. Попытайся доказать, что тепло окружающей среды может прямо и стопроцентно переходить в электрическую или какую-либо иную форму энергии.
Коллега Б. Доказать это можно очень просто. Я мог бы сослаться на эффект Гельмгольцевой теплоты в аккумуляторах и некоторых гальванических элементах, например в элементе Бугарского, но я сошлюсь прежде всего на опыты Ленца.
Коллега А. Ты имеешь в виду его опыт с замораживанием капли воды на спае двух разнородных проводников?
Коллега Б. Вот именно.
Коллега А. Не понимаю, какое отношение опыт Ленца имеет к обсуждаемой проблеме?
Коллега Б. Самое непосредственное. На этом опыте можно наглядно видеть, что количество электрической энергии, затрачиваемой на движение электронов в месте соединения разнородных проводников, значительно меньше того тепла, которое поглощается в этом месте из среды. Если бы тепло, образующееся на границе двух металлов (Джоулево тепло), было больше тепла, поглощаемого в месте спая, то, конечно, ни Ленцу, ни кому-либо другому не удалось бы заморозить каплю воды.
Вот и выходит, что в капле воды заморожена огромная сила. Надо только уметь в малом видеть большое.
Коллега А. Не понимаю, чему ты радуешься.
Какую разгадку ты нашел в этом? В основе опыта Ленца лежит эффект Пельтье, и ничего больше.
Коллега Б. Я ничуть не сомневался, что ты так скажешь. Но вдумайся только в то, что на стыке двух разнородных металлов капля воды замерзла.
311
В свете эффекта Пельтье тебе все это кажется элементарно простым. Я же отношусь к этому по-другому. Я тоже знаю эффект Пельтье и тем не менее удивляюсь опыту Ленца.
Коллега А. Воля твоя, можешь удивляться, чему хочешь.
Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Павел Ощепков - Жизнь и мечта, относящееся к жанру Техническая литература. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

