`

Вадим Грибунин - Цифровая стеганография

1 ... 33 34 35 36 37 ... 62 ВПЕРЕД
Перейти на страницу:

2. В стего S имеется сообщение М с энтропией H(М) > 0. Очевидно, что при наличии этой встроенной информации у нарушителя появляется отличная от нуля неопределенность относительно S, если известно С и неопределенность относительно С, если известно S: H(S/C)) > 0, H(C/S) > 0. Следовательно, взаимная информация между скрываемыми сообщениями и соответствующими контейнерами и стего уже не может быть равной нулю:

.

Поэтому,

. (4.11)

Это означает, что условие стойкости стегосистемы не обеспечивается. Можно показать, что необходимым и достаточным условием стойкости является:

H(S/C) = H(C/S) = 0. (4.12)

Поэтому в работе [2] делается вывод, что если нарушителю известны стегограммы и соответствующие им контейнеры, то стегосистема не может быть совершенной. В рамках теоретико-информационной модели рассматриваемая стегосистема в атаке нарушителя с известным контейнером не может скрыть факта передачи скрываемого сообщения. А из выражения (4.11) следует, что нарушитель также способен узнать если не полностью, то частично содержание этого сообщения: если , то при известных S и С неопределенность нарушителя об этом сообщении меньше его энтропии.

Обеспечение требуемой стойкости может быть получено при переходе от детерминированных стегосистем к недетерминированным (вероятностным). Рассмотрим один из возможных вариантов построения вероятностной стегосистемы, предложенный в [2]. В рассматриваемой вероятностной стегосистеме для выполнения необходимого и достаточного условия стойкости вида H(S/C) = H(C/S) = 0 обеспечивается неизвестность для нарушителя используемого контейнера. Для этого в модель стегосистемы вводится источник контейнеров CS, характеристики которого известны нарушителю. Для встраивания скрываемых сообщений из множества CS случайно и равновероятно выберем подмножество контейнеров С, которое назовем подмножеством действительных контейнеров: . Пусть выполняется условие H(СS) >= H(С) и вероятностные характеристики подмножества С отличаются от соответствующих характеристик множества CS. Потребуем, чтобы неопределенность нарушителя относительно действительных контейнеров при известном множестве CS была бы строго больше нуля: H(С/СS) > 0. Физически это может быть обеспечено, если выбор действительных контейнеров осуществляется с помощью случайного и равновероятного значения R, полученного с выхода генератора случайных чисел, как это показано на рис. 4.2.

Необходимая неопределенность относительно С достигается выбором каждого контейнера совершенно случайным образом и сохранением выбора в тайне. Примером такого процесса может быть взятие выборок из аналогового входного сигнала, такого как речь или видео. Погрешность квантователя обеспечивает необходимую неопределенность. Если изменения контейнера в процессе встраивания информации остаются в пределах погрешности квантователя, то такая манипуляция не может быть обнаружена.

Рис. 4.2. Стегосистема с рандомизированным выбором контейнера

Определим, что для рассматриваемой вероятностной стегосистемы основное условие стойкости выражается в виде

. (4.13)

Это означает, что неопределенность нарушителя относительно M не может быть уменьшена знанием S и CS, или M является независимым от S и CS.

Исследуем условия, при которых нарушитель не способен обнаружить изменения в контейнере, произошедшие при встраивании сообщения M с энтропией H(M), наблюдая стего. Для этого определим требуемую величину неопределенности нарушителя относительно контейнера H(C/S). Можно показать, что

(4.14)

При наихудшем случае противник способен полностью определить M из S и C: .

Следовательно, в общем случае выполняется

. (4.15)

Так как взаимная информация  не может быть более величины H(M), неопределенность должна быть, по крайней мере, той же величины, чтобы сделать чтение сообщения невозможным.

В стойкой стегосистеме, нарушитель, наблюдая стего S, не должен получить информацию сверх той, которая ему известна априори из знания множества CS:

H(C/CS) = H(C/S), (4.16)

и, поэтому,

H(C/CS) >= H(M). (4.17)

Таким образом, для нарушителя, знающего характеристики множества CS, в стойкой стегосистеме неопределенность относительно подмножества действительных контейнеров C должна быть не меньше энтропии скрываемых сообщений.

Определим совместную энтропию H0 между множествами C и CS

H0 = H(C,CS) = H(C) + H(CS/C). (4.18)

Так как и H(CS) >= H(C), то

H(CS/C) >= H(C/CS).

Для стойкой стегосистемы получим нижнюю границу величины совместной энтропии

H0 >= H(C) + H(C/CS).

Используя выражение (4.17), запишем

H0 >= H(C) + H(M). (4.19)

Так как H(CS) >= H (C), то H(CS,S) >= H(C,S). Следовательно,

H(CS,S) >= H(C,S). (4.20)

В соответствии с выражением (4.15) получим, что граница может быть определена в виде:

H(CS,S) >= H(M). (4.21)

Сформируем заключение: при достижении нижней границы для H(C/S) (уравнение 4.15), нарушитель, знающий S и CS, не способен получить доступ к скрываемому в стего S сообщению M. Фундаментальное условие стойкости (4.13) может быть выполнено.

Рассмотрим условия, при которых нарушитель не способен определить ключ К стегосистемы. Потребуем, чтобы нарушитель, знающий S и CS, не мог получить никакой информации ни о ключе К, ни о сообщении М. Это может быть выражено в виде

I((K,М);(S,CS)) = H(K,М) — H((K,М)/(S,CS)) = (4.22)

H(K,М) — H(K/(S,CS)) — H(М/(S,CS,K)) = 0.

При знании ключа К, множества CS из стего S однозначно извлекается сообщение М:

H(М/(S,CS,K)) = 0,

Поэтому из выражения (4.22) получим

H(K/(S,CS) = H(K,М),

или

H(K/(S,CS) = H(М) + H(K/М) >= H(М), (4.23)

соответственно, так как H(K/М) >= 0.

Таким образом, для нарушителя неопределенность ключа стойкой стегосистемы должна быть не меньше неопределенности передаваемого скрытого сообщения. Это требование для совершенных стегосистем очень похоже на требование неопределенности ключа К для совершенных систем шифрования, для которых энтропия ключа К при перехваченной криптограмме Е должна быть не меньше энтропии шифруемого сообщения М [7]:

.

Делаем вывод, что действительный контейнер должен быть неизвестным для нарушителя, чтобы обеспечить теоретико-информационную стойкость стегосистемы. Нарушитель не способен ни обнаружить факт передачи скрываемого сообщения, ни читать его, если выполняются два условия:

1 ... 33 34 35 36 37 ... 62 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Вадим Грибунин - Цифровая стеганография, относящееся к жанру Техническая литература. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)