Сергей Семиков - Баллистическая теория Ритца и картина мироздания
Пороком максвелловой теории было и то, что она давала равные права электрическому и магнитному полям, способным взаимообращаться, порождать друг друга [60]. Ампер же считал магнитные воздействия вторичными, сводя магнитные эффекты к взаимодействию подвижных зарядов (токов). Реально лишь электрическое взаимодействие F0= e2/4πε0R2 зарядов e, а магнитное — его частное проявление. Вебер развил эту мысль, дав уточнённое выражение F = F0[1–V2/c2+2Rа/c2] для элементарной силы взаимодействия зарядов, учитывающее, кроме их дистанции R, относительные лучевые скорости V и ускорения a [106]. Слагаемые, содержащие V и a, давали магнитные и индукционные силы в качестве малых добавок электрической силы от движения зарядов. Так возник термин "электродинамика", где, в противовес электростатике (F=F0), изучалось взаимодействие подвижных зарядов. А концепцию Максвелла правильней называть "теорией электромагнетизма" ввиду отведения электричеству и магнетизму равных ролей без объяснения причин перехода одного в другое.
Рис. 18. Движение проволочной рамки ведёт к уменьшению потока Ф поля B через рамку и создаёт в ней силы Лоренца, наводящие ЭДС индукции с током Iинд в контуре.
Впрочем, и формула Вебера была эмпирической. Строго её обосновал Вальтер Ритц, получив формулу, как прямое следствие открытого им механизма взаимодействия элементарных зарядов (электронов) — посредством обмена стандартными микрочастицами (реонами). Именно так он вывел из своей модели силы магнитного взаимодействия (§ 1.7). В своём главном труде [8] Ритц объяснил не только все магнитные эффекты, но и явление электромагнитной индукции, открытое Фарадеем. Суть его в том, что изменение магнитного потока Ф вектора B через замкнутый контур (скажем, проволочное кольцо) наводит в этом контуре ЭДС индукции, создающей ток индукции и, по правилу Ленца, мешающей изменению потока [60].
Рассмотрим прямоугольную проволочную рамку и лежащий в её плоскости проводник с током (Рис. 18). По закону Фарадея, удаление рамки от провода со скоростью V наведёт в рамке ЭДС индукции U =-dФ/dt. Но и эта индукционная сила, по своей природе, — чисто электрическая, ибо, подобно магнитной силе, вызвана малым изменением электровзаимодействия зарядов от их движения. Как легко вычислить, ЭДС U =-dФ/dt создаётся разницей сил Лоренца Fл1—Fл2, действующих на заряды в ближнем и дальнем участке рамки, поскольку поле B2 меньше, чем в ближнем B1 [45]. В силу классического принципа относительности, то же получим и в случае, если рамка неподвижна, а удаляется проводник с током. Сложнее случай, когда провод и рамка неподвижны, но меняется ток в проводнике и создаваемое им магнитное поле B и его поток Ф через рамку (Рис. 19). В этом случае, из-за эффекта Ритца и запаздывания электрических воздействий разные участки рамки воспримут воздействие движущихся с ускорением a зарядов проводника с разным запозданием и интенсивностью. Это снова породит электрическую силу индукции U=-dФ/dt и ток в рамке.
Рис. 19. Замедление зарядов в проводнике (ускорение a направлено против скорости) снижает величину тока I и вызванный им поток индукции Ф через рамку, а также создаёт разность сил, наводящих ЭДС и ток индукции в контуре.
Итак, магнитные, индукционные и прочие электродинамические эффекты, включая релятивистские, возникают в БТР как малые добавки к силе электрического воздействия от равномерного или ускоренного движения зарядов. Эти добавки возникают при учёте высших порядков при разложении электрической силы в ряд по степеням V/c и Rа/c2. Влиянию этих малых, но весьма существенных поправок Ритц придавал основное значение в своей электродинамике, показав, что эти добавки вызваны запаздыванием воздействий, конечной скоростью их распространения (см. эпиграф § 1.8), отчего меняется частота f прихода реонов к заряду, а значит сила воздействия на него. То есть, электродинамические эффекты — это прямое следствие квадратичного эффекта Доплера и Ритца — изменения частоты f = f0[1–V2/c2+Rа/c2] от движения источника (см. § 1.20 и § 1.10). Потому похожее выражение получается и для силы взаимодействия зарядов F=F0[1–V2/c2+2Rа/c2]. Это, как и все электродинамические эффекты, — прямое следствие открытых Ритцем пространственно-временных соотношений и конечной скорости c реонов, то есть запаздывания электрических сигналов. Именно единая кинетическая природа эффектов Доплера и Ритца позволяет понять, почему изменение потока Ф через контур как от скорости (Рис. 18), так и от ускорения зарядов (Рис. 19), порождает одинаковую ЭДС индукции, а также найти исключения из этого эмпирического правила Фарадея.
Электродинамику Максвелла предпочли исконной веберовской ещё и потому, что он рассматривал электромагнитные явления в средах, Вебер же говорил лишь о взаимодействии в пустоте. Вдобавок электродинамику сред проще изучать в рамках полевого, эфирного подхода, на языке физики сплошных сред, к которым относили эфир. Но, как показал Лоренц в своей электронной теории, все выводы электродинамики Максвелла для диэлектриков, металлов, преломляющих сред, получаются и в прежнем описании элементарных взаимодействий зарядов в вакууме. Надо лишь представить среду совокупностью зарядов (электронов и ионов), смещаемых и колеблемых под действием внешних источников, тем самым порождая вторичные воздействия и волны, которые налагаются на исходные и потому преобразуют их. Так что и здесь концепция Ритца — логичней максвелловой, вводящей для каждой среды свои свойства эфира. Впрочем, учёные во главе с Лоренцем пытались встроить электронную теорию, отрицающую особую роль среды, — в максвеллову, хотя куда естественней она вписывалась в электродинамику Вебера.
Объясняет Ритц и электромагнитные волны, давшие признание электродинамике Максвелла (§ 1.11). Как показал Ритц, электромагнитные волны получались и в электродинамике Вебера, причём много проще. Если Максвеллу требовались нескончаемые превращения электрического и магнитного поля для распространения волн, то в электродинамике Ритца световые колебания возникали как естественное следствие передачи переменных электрических воздействий с конечной скоростью потока частиц, равной скорости света c. Опыты Герца доказали реальность электромагнитных волн, электрическую природу света, но ничуть не подтвердили физической реальности поля или эфира и основанной на них теории Максвелла. Таким образом, электродинамика Ритца описывает те же самые эффекты, что и электродинамика Максвелла, в большинстве случаев естественно приводя к тем же результатам. И лишь в тонких и ещё неисследованных эффектах можно найти расхождение между этими электродинамическими теориями, что позволит однажды строго, на основании опытов, сделать выбор в пользу одной из теорий. Но уже сейчас в пользу БТР говорит то, что в электродинамике Ритца все явления трактуются чисто механически, наглядно. Существование магнитных и индукционных эффектов в БТР само собой вытекает из модели взаимодействия зарядов и не нуждается, в отличие от максвелловой теории, в принятии искусственных дополнительных гипотез об абстрактных электрических и магнитных полях.
Физики, однако, боготворят Максвелла и его уравнения. Восхищение уравнениями Максвелла доходит до того, что их обожествляют, словно в них заключена вся мудрость природы, и всё из них следует. А между тем эти уравнения построены чисто формально, как произвольные обобщения эмпирически открытых законов. Так, первое уравнение Максвелла rotH=∂D/∂t+j и четвёртое уравнение divB=0 — это всего лишь обобщения известных законов Био-Савара-Лапласа и Ампера, позволяющих найти величину магнитного поля проводника с током. Второе уравнение Максвелла rotE=-∂B/∂t — это просто обобщённый закон электромагнитной индукции Фарадея [88]. Наконец, третье уравнение divD=ρ — это, опять же, не более чем обобщение закона Кулона, задающего электрическое поле D заряда, и теоремы Остроградского-Гаусса. Иногда утверждают, что Максвелл, кроме обобщения этих известных законов, сделал важное и даже гениальное добавление — открыл ток смещения (∂D/∂t — плотность этого тока), который, как следует из первого уравнения, создаёт магнитное поле H, подобно току проводимости (j — его плотность).
Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Сергей Семиков - Баллистическая теория Ритца и картина мироздания, относящееся к жанру Техническая литература. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.


