Вадим Грибунин - Цифровая стеганография
Рис. 3.2. Структурная схема стегосистемы водяного знака при активном противодействии нарушителя
Заверенное водяным знаком стего в общем случае формируется по правилу , где есть функция встраивания по ключу . В обозначении функции встраивания неявно указывается, что она выполняет преобразования над блоком длины N. В простейшем примере встраивание может выполняться по правилу для , где переменные , и принадлежат конечному алфавиту . В современных системах водяного знака применяются сложные построения функции , учитывающие характеристики чувствительности органов зрения или слуха человека и не являющиеся аддитивными [15]. Преобразование должно быть удобным для скрывающего информацию, а также должно минимизировать вносимые искажения в контейнер при условии обеспечения требуемой устойчивости к атакам нарушителя. Оптимальное построение таких функций представляет сложную задачу.
Формально определим вносимые искажения в стратегиях скрывающего информацию и нарушителя. Это завершает математическое описание стегосистемы и позволяет определить скорость безошибочной передачи для стегосистемы, представленной на рис. 3.1.
Пусть искажения в стегосистеме оцениваются в соответствии с ограниченной неотрицательной функцией вида где . Используемая мера искажения симметрична: , выполнение равенства означает совпадение . Следовательно, используемая мера искажения является метрикой. Метрика искажений расширяется на последовательности длиной N символов и следующим образом: . Теория информационного скрытия использует классические метрики искажения, такие как метрики Хэмминга и Евклида, а также метрики, учитывающие особенности слуховой или зрительной чувствительности человека [16].
Назовем искажение контейнера , вызванное встраиванием в него скрываемого сообщения искажением кодирования.
Определение 3.1: Стегосистема с длиной блока N, приводящая к искажению кодирования не более , есть совокупность множеств скрываемых сообщений M, контейнеров , стего и ключей и определенных на них функций кодирования fN и декодирования , где есть отображение контейнера , сообщения m и ключа в стего . Это отображение ограничено величиной среднего искажения кодирования :
; (3.1)
а есть декодирующее отображение принятой стегопоследовательности и ключа в декодированное сообщение
Таким образом, величина характеризует искажение контейнера, максимально допустимое при встраивании в него скрываемого сообщения. Данное определение, хотя формально описывает стегосистемы блочного типа, может быть расширено и на стегосистемы поточного типа, у которых окно обработки описывается скользящим блоком длины N. В этом случае параметр N стегосистемы по аналогии с непрерывными кодами может быть назван длиной кодового ограничения стегосистемы.
Обычно искажение мало, так как встраиваемое в контейнер сообщение должно быть незаметным для нарушителя. В стегосистемах, в которых контейнер представляет полезный для получателя информационный сигнал, величина ограничивается отправителем сообщений для сохранения высокого качества контейнера. В системах ЦВЗ требование минимизации формулируется как требование прозрачности водяного знака, заверяющего контейнер.
Заметим, что данное определение искажения использует усреднение относительно распределения и относительно равномерного распределения сообщений. Это позволяет воспользоваться классическими методами теории информации, сформулированными К. Шенноном [1]. Также возможно, но более сложно использовать для анализа стегосистем максимальное искажение контейнеров, где максимум отыскивается для распределений , и m.
Распределения , p(m) и выбор отображения fN определяют конкретный вид распределения множества формируемых стегограмм.
Определение 3.2: Атакующее воздействие без памяти, приводящее к искажению D2, описывается условной функцией распределения из множества во множество , такой что
. (3.2)
По определению есть максимальная величина искажения стегограммы, вызванное преднамеренными действиями нарушителя. Физический смысл ограничения величины заключается в следующем. В системах ЦВЗ нарушитель, пытаясь удалить водяной знак из заверенного контейнера, вынужден сам уменьшать величину , чтобы не исказить ценный для него контейнер. В других стегосистемах величина ограничивается имеющимся у атакующего энергетическим потенциалом постановки помех, возникающими помехами для других каналов связи при использовании совместного ресурса и другими причинами.
Резонно предположить, что для реальных стегосистем обычно выполняется соотношение D2 => D1.
В соответствии с определением 3.2 атакующее воздействие описывается и ограничивается усредненными искажениями между множествами и . В других случаях, если атакующий знает описание функции fN, то атакующее воздействие описывается и ограничивается усредненным искажением между множествами и :
. (3.3)
Определение D2 в соответствии с выражением (3.3) предполагает, что нарушителю известны точные вероятностные характеристики контейнеров. Как будет показано далее, это обстоятельство существенно усложняет задачу обеспечения защищенности скрываемой информации, поэтому в стойких стегосистемах используются различные методы скрытия от нарушителя характеристик используемых контейнеров. Например, такие методы включают использование для встраивания подмножества контейнеров с вероятностными характеристиками, отличающимися от характеристик всего известного нарушителю множества контейнеров или рандомизированное сжатие контейнерного сигнала при встраивании в него скрываемого сообщения [17]. Поэтому вычисление искажения D2 в соответствии с определением 3.2 является более универсальным, так как нарушитель всегда имеет возможность изучать вероятностные характеристики наблюдаемых стего.
Имея описание стегосистемы и атакующего воздействия можно описать состязание (игру) между скрывающим информацию и атакующим.
Определение 3.3: Информационно-скрывающее противоборство, приводящее к искажениям (D1,D2), описывается взаимодействием используемой стегосистемы, приводящей к искажению кодирования D1, и атакующего воздействия, приводящего к искажению D2.
Скорость передачи скрываемых сообщений по стегоканалу определим в виде R=1/N log. Скорость передачи R выражается в среднем числе бит скрываемых сообщений, безошибочно передаваемых (переносимых) одним символом (отсчетом) стегопоследовательности xN. Это определение созвучно «классическому» определению скорости передачи обычных сообщений по каналу передачи, выражаемой в среднем числе безошибочно передаваемых бит за одно использование канала [1].
Вероятность разрушения скрываемого сообщения в стегопоследовательности длины N определим как
, (3.4)
где скрываемые сообщения М равновероятно выбираются среди множества M. Вероятность есть средняя вероятность того, что атакующий успешно исказит скрытно передаваемое сообщение, усредненная над множеством всех сообщений. Атакующий добивается успеха в информационном противоборстве, если декодированное на приеме сообщение не совпадет с встроенным в контейнер скрываемым сообщением, или декодер не способен принять однозначного решения.
Теоретически достижимую скорость безошибочной передачи скрываемых сообщений и скрытую пропускную способность при искажениях не более величин (D1, D2) определим следующим образом.
Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Вадим Грибунин - Цифровая стеганография, относящееся к жанру Техническая литература. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

